Author: Choroba, S.
Paper Title Page
WEPMF051 Multipacting in an RF Window: Simulations and Measurements 2483
 
  • M. Bousonville, S. Choroba
    DESY, Hamburg, Germany
 
  Electron guns are used in the accelerators of the European XFEL and FLASH. They are operated at 1.3 GHz. The RF peak power is 5 MW at 650 us pulse width and 10 Hz repetition rate. In order to understand the multipacting that occurs during conditioning, it was simulated in the RF window type that is used for the electron gun in the XFEL. The reduction in secondary emission yield associated with conditioning was taken into account. Since the RF windows are tested with high power on a test stand before their use, without the electron gun, measurement results are available which are compared with the simulation results. The main advantage of the simulation compared to the measurement is that the locations of multipacting can be determined in the RF window. This could be helpful for the development of high-power RF components in the future, in order to detect pronounced multipacting resonances even before production and to avoid them by design changes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMF053 XFEL Modulators with Pulse Cables 2487
 
  • H.-J. Eckoldt, S. Choroba, T. Grevsmühl, A. Hauberg, J. Havlicek, N. Heidbrook, K. Machau, N. Ngada
    DESY, Hamburg, Germany
  • M. Frei, S.G. Keens, T.H. Strittmatter
    Ampegon AG, Turgi, Switzerland
  • H. Leich
    DESY Zeuthen, Zeuthen, Germany
 
  The modulators of the European XFEL produce high voltage, at the 10kV level, having a power of up to 16.8 MW for 1.54 ms. The operation frequency of the super-conducting inac is 10 Hz. The series production of the 29 modulators started in 2012. The first modulator began operation in 2014 and the start of linac was beginning 2017. The R&D phase for the modulators started directly with the development of superconducting cavities. Besides the pulse generation, the modulator had to suppress the 10 Hz repetition rate in order not to disturb the grid. Another unique demand was the development of pulse cables. Since the power RF had to be generated in the tunnel, the klystrons were installed near the cavities. However, the modulators had to be installed outside of the tunnel for space, maintenance reasons and radiation concerns. This transmission of high power pulses via long cables is unique in the world and the suppression of EMI effects was mandatory. During the first year operation no EMI disturbances of other systems were detected and the modulator system works as expected.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)