Author: Cheng, H.P.H.
Paper Title Page
WEPAF043 Commissioning and Long-Term Results of a Fully-Automated Pulse-Based Optical Timing Distribution System at Dalian Coherent Light Source 1909
 
  • H.P.H. Cheng, A. Berlin, E. Cano, A. Dai, J. Derksen, D. Forouher, W. Nasimzada, M. Neuhaus, P. Schiepel, E. Seibel, K. Shafak
    Cycle GmbH, Hamburg, Germany
  • Z. Chen, H.L. Ding, Z.G. He, Y.H. Tian, G.R. Wu
    DICP, Dalian, People's Republic of China
  • F.X. Kärtner
    Deutsches Elektronen Synchrotron (DESY) and Center for Free Electron Science (CFEL), Hamburg, Germany
  • B. Liu, X.Q. Liu
    SINAP, Shanghai, People's Republic of China
 
  New generation light sources such as X-ray free-electron lasers* and attoscience centers** require high demand for timing synchronization, on the order of few femtoseconds or below, to generate ultrashort X-ray pulses that enables attosecond temporal and subatomic spatial resolution. The challenge in achieving this scientific dream lies in part in a reliable, high-precision timing distribution system that can synchronize various optical and microwave sources across multi-km distances with good long-term stability. It was shown that the pulsed-optical timing distribution system can deliver sub-fs long-term timing precision between remotely synchronized lasers and microwave sources in laboratory environment.*** We present the latest results from the commissioning of China's first multi-link pulse-based optical timing distribution system (TDS) installed at Dalian Coherent Light Source. Long term operating results of the fully-automated polarization-maintaining TDS, as well as lessons learned and recommendations for future improvements, are presented, including performance of the timing-stabilized PM fiber links, microwave end-stations and ultrafast laser synchronization end-stations.
*http://www.xfel.eu/news/2017/europeanxfelgeneratesitsfirstlaserlight
**G. Mourou and T. Tajima, Science, 331, pp. 41-42, 2011.
***M. Xin et al., Light Sci. Appl., 6, e16187, 2017.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)