Paper | Title | Page |
---|---|---|
TUPAF076 | Design of PIP-II Medium Energy Beam Transport | 905 |
|
||
Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics The Proton Improvement Plan-II (PIP-II) is a proposed upgrade for the accelerator complex at Fermilab. The central piece of PIP-II is a superconducting radio frequency (SRF) 800 MeV linac capable of operating in both CW and pulse regimes. The PIP-II linac comprises a warm front-end that includes a H− ion source capable of delivering 15-mA, 30-keV DC or pulsed beam, a Low Energy Beam Transport (LEBT), a 162.5 MHz, CW Radio-Frequency Quadrupole (RFQ) accelerating the ions to 2.1 MeV and, a 14-m Medium Energy Beam Transport (MEBT) before beam is injected into SRF part of the linac. This paper presents the PIP-II MEBT design and, discusses operational features and considerations that lead to existing optics design such as bunch by bunch chopping system, minimization of radiation coming to the warm front-end from the SRF linac using a concrete wall, a robust vacuum protection system etc. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF076 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPML021 | First Performance Results of the PIP2IT MEBT 200 Ω Kicker Prototype | 2724 |
|
||
Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics The PIP-II project is a program to upgrade the Fermilab accelerator complex. The PIP-II linac includes a 2.1 MeV Medium Energy Beam Transport (MEBT) section that incorporates a unique chopping system to perform arbi-trary, bunch-by-bunch removal of 162.5 MHz structured beam. The MEBT chopping system will consist of two identical kickers working together and a beam absorber. One design of two having been proposed has been a 200 Ω characteristic impedance traveling wave dual-helix kicker driven with custom designed high-speed switches. This paper reports on the first performance results of one prototype kicker built, installed and tested with beam at the PIP-II Injector Test (PIP2IT) facility. The helix deflector design details are discussed. The electrical performance of the high-speed switch driver operating at 500 V bias is presented. Tests performed were chopping beam at 81.25 MHz for microseconds as well as with a truly arbitrary pattern for 550 us bursts having a 45 MHz average switching rate and repeating at 20 Hz. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THYGBF2 | PIP-II Injector Test Warm Front End: Commissioning Update | 2943 |
|
||
Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics The Warm Front End (WFE) of the Proton Improvement Plan II Injector Test [1] at Fermilab has been constructed to its full length. It includes a 15-mA DC, 30-keV H− ion source, a 2 m-long Low Energy Beam Transport (LEBT) with a switching dipole magnet, a 2.1 MeV CW RFQ, followed by a Medium Energy Beam Transport (MEBT) with various diagnostics and a dump. This report presents the commissioning status, focusing on beam measurements in the MEBT. In particular, a beam with the parameters required for injection into the Booster (5 mA, 0.55 ms macro-pulse at 20 Hz) was transported through the WFE. |
||
![]() |
Slides THYGBF2 [2.434 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THYGBF2 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |