Author: Chance, A.     [Chancé, A.]
Paper Title Page
MOPMF024 Dipole Field Quality and Dynamic Aperture for FCC-hh 137
 
  • B. Dalena
    CEA/IRFU, Gif-sur-Yvette, France
  • D. Boutin, A. Chancé
    CEA/DRF/IRFU, Gif-sur-Yvette, France
  • B.J. Holzer, S. Izquierdo Bermudez, D. Schoerling, D. Schulte
    CERN, Geneva, Switzerland
 
  Funding: This Research and Innovation Action project submitted to call H2020-INFRADEV-1-2014-1 receives funding from the European Union's H2020 Framework Program under grant agreement No. 654305.
The Nb3Sn dipole design for the hadron machine option of the Future Circular Colliders enters in an intense and long R&D phase. As a result, more realistic dipole field quality evaluations are available for beam dynamics studies. The paper discusses the impact of the main dipole field quality on the first and second order design of the hadron machine and on its dynamic aperture.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMF023 Updates on the Optic Corrections of FCC-hh 133
 
  • D. Boutin, A. Chancé, B. Dalena
    CEA/IRFU, Gif-sur-Yvette, France
  • B.J. Holzer, D. Schulte
    CERN, Geneva, Switzerland
 
  The FCC-hh (Future Hadron-Hadron Circular Collider) is one of the options considered for the next generation accelerator in high-energy physics as recommended by the European Strategy Group, and the natural evolution of existing LHC. The evaluation of the various magnets mechanical error and field error tolerances in the arc sections of FCC-hh, as well as an estimation of the correctors strengths necessary to perform the error corrections, are important aspects of the collider design. In this study recommended values for the mechanical errors, dipole and quadrupole field errors tolerances are proposed, with the possible consequences on the correctors technological choice and on the beam screen design. Advanced correction schemes of the linear coupling (with skew quadrupoles) and of the beam tunes (with normal quadrupoles) are discussed. Also a combined correction scheme including the interaction regions is tested.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMF025 Overview of Arc Optics of FCC-hh 141
 
  • A. Chancé, B. Dalena
    CEA/IRFU, Gif-sur-Yvette, France
  • D. Boutin
    CEA/DRF/IRFU, Gif-sur-Yvette, France
  • B.J. Holzer, D. Schulte
    CERN, Geneva, Switzerland
 
  Funding: The European Circular Energy-Frontier Collider Study (EuroCirCol) project has received funding from the European Union's Horizon 2020 research and innovation programme under grant No 654305.
The FCC-hh (Future Hadron-Hadron Circular Collider) is one of the options considered for the next generation accelerator in high-energy physics as recommended by the European Strategy Group. In this overview the status and the evolution of the design of optics integration of FCC-hh are described, focusing on design of the arcs, alternatives, and tuning procedures.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)