Paper | Title | Page |
---|---|---|
MOPMF034 | Layout and Performance of the FCC-ee Pre-Injector Chain | 169 |
|
||
The Future Circular e+e− Collider pre-injector chain consists of a 6 GeV S-Band linac, a damping ring at 1.54 GeV and pre-booster ring to reach 20 GeV for injection to the main booster. The electron and positron beams use the same accelerator chain alternatively. The e+ beam is generated from a novel low level RF-gun providing 6.5 nC charge at 11 MeV with 0.5 micron geometric emittance. The e+ beam is produced by the impact of a 4.46 GeV e- beam onto a hybrid target, accelerated in the linac up to 1.54 GeV, and injected to the damping ring for emittance cooling. Simulations on the performance of the DR are presented for reaching the required equilibrium emittances at the required damping time. As an alternative option, a 20 GeV linac is considered utilising C-Band cavities and simulations studies have been undertaken regarding the beam transport and transmission efficiency up to that energy. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF034 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEYGBD3 | The CERN Gamma Factory Initiative: An Ultra-High Intensity Gamma Source | 1780 |
|
||
This contribution discusses the possibility of broadening the present CERN research programme making use of a novel concept of light source. The proposed, Partially Stripped Ion beam driven, light source is the backbone of the Gamma Factory (GF) initiative. It could be realized at CERN by using the infrastructure of the already existing accelerators. It could push the intensity limits of the presently operating light-sources by up to 7 orders of magnitude, reaching fluxes of 1017 photons/s in the interesting gamma-ray energy domain between 1 MeV and 400 MeV. The GF light-source cannot be replaced, in this energy domain, by a FEL source as long as the multi TeV electron beams are not available. Its intensity is beyond the reach of the Inverse Compton Scattering sources. The unprecedented-intensity, energy-tuned gamma beams, together with the gamma-beams-driven secondary beams of polarized leptons, neutrinos, neutrons and radioactive ions are the basic research tools of the proposed Gamma Factory. A broad spectrum of new opportunities, in a vast domain of uncharted fundamental and applied physics territories, could be opened by the Gamma Factory research programme. | ||
![]() |
Slides WEYGBD3 [7.531 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEYGBD3 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPMK105 | PERLE - Lattice Design and Beam Dynamics Studies | 4556 |
|
||
Funding: Work has been authored by Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177 with the U.S. Department of Energy. PERLE (Powerful ERL for Experiments) is a novel ERL test facility, initially proposed to validate choices for a 60 GeV ERL foreseen in the design of the LHeC and the FCC-eh. Its main thrust is to probe high current, CW, multi-pass operation with superconducting cavities at 802 MHz (and perhaps testing other frequencies of interest). With very high virtual beam power (~ 10 MW), PERLE offers an opportunity for controllable study of every beam dynamic effect of interest in the next generation of ERL design; becoming a ‘stepping stone' between present state-of-art 1 MW ERLs and future 100 MW scale applications. PERLE design features Flexible Momentum Compaction lattice architecture for six vertically stacked return arcs and a high-current, 6 MeV, photo-injector. With only one pair of 4 cavity cryomodules, 400 MeV beam energy can be reached in 3 re-circulation passes, with beam currents in excess of 15 mA. The beam is decelerated in 3 consecutive passes back to the injection energy, transferring virtually stored energy back to the RF. This unique facility will serve as a test-bed for high current ERL technologies, as well as a user facility in low energy electron and photon physics. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK105 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |