Author: Capatina, O.
Paper Title Page
TUPAF057 The SPS Tests of the HL-LHC Crab Cavities 846
 
  • R. Calaga, O. Capatina, G. Vandoni
    CERN, Geneva, Switzerland
 
  Funding: Research supported by the HL-LHC project
Two superconducting crab cavities in the framework of the High Luminosity (HL-LHC) LHC were built to test for the first time with proton beams in the Super Proton Synchrotron (SPS) at CERN. These tests will address the operation of the crab cavities in a high current and high intensity proton machine through the full energy cycle with a primary focus on cavity transparency, performance and stability, failures modes and long term effects on proton beams. An overview of the SPS cryomodule development towards the SPS tests along with the first test results are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF057  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMF078 Assembly of the DQW Crab Cavity Cryomodule for SPS Test 2561
 
  • M. Garlaschè, K. Artoos, R. Calaga, O. Capatina, T. Capelli, N. El Kbiri, D. Lombard, P.F. Marcillac, P. Minginette, M. Narduzzi, L.R.A. Renaglia, J. Roch, J.S. Swieszek
    CERN, Geneva, Switzerland
  • A. Krawczyk, B. Prochal
    IFJ-PAN, Kraków, Poland
 
  RF Crab Cavities are an essential part of the High Luminosity Upgrade of the LHC accelerating complex. Two concepts of such superconducting systems are being developed: the Double Quarter Wave (DQW) and the RF Dipole (RFD). A prototype cryomodule - hosting two DQW cavities - has been fabricated and assembled for validation tests to be carried out in the Super Proton Synchrotron (SPS) at CERN. An overview of the main cryomodule components is presented, together with the system features and main fabrication requirements. The preparatory measures for cryomodule assembly, the execution and lessons learned are also discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF078  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMF081 Mechanical Strain Measurements Based on Fiber Bragg Grating Down to Cryogenic Temperature - R&D Study and Applications 2572
 
  • M. Guinchard, A. Bertarelli, L. Bianchi, F.B. Boyer, M. Cabon, M. Calviani, O. Capatina, A. Catinaccio, P. Ferracin, P. Grosclaude
    CERN, Geneva, Switzerland
 
  In recent years, optical fiber sensors have been increasingly used due to their outstanding performances. Their application is preferable in case of special requirements that exclude the application of conventional electrical sensors. The scientific background of optical fiber sensors is well developed. However, the characteristic of sensors employed in rather harsh environments is often different from the one determined in laboratory conditions or prior to their installation. In order to achieve long-term stable functioning and reliable measurement under severe working environments, such as those occurring at CERN (radiation, cryogenics, high magnetic and electrical field), a statistical measurement campaign was carried out following the international standard ISO 5725. The paper describes the ongoing study to define the accuracy of optical fiber sensors based on Fiber Bragg Grating (FBG) for strain measurements, from room temperature down to 4.2 K. It also describes some of the demanding applications for which optical fiber sensors have been deployed to perform experimental strain measurements (e.g. detectors components, high-energy beam targets and dumps, superconducting magnets).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF081  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)