Author: Byrne, W.E.
Paper Title Page
THPMF077 A Novel 7BA Lattice for a 196-m Circumference Diffraction-Limited Soft X-Ray Storage Ring 4252
 
  • S.C. Leemann, W.E. Byrne, M. Venturini
    LBNL, Berkeley, California, USA
  • J. Bengtsson
    DLS, Oxfordshire, United Kingdom
  • A. Streun
    PSI, Villigen PSI, Switzerland
 
  Funding: Work supported by the Director of the Office of Science of the US Department of Energy under Contract No. DEAC02-05CH11231
The current baseline for the ALS Upgrade to a diffraction-limited soft x-ray storage ring is a 9BA lattice with two dispersion bumps for localized chromatic corrections. Although this lattice meets the very aggressive emittance goal, it offers limited margins in terms of dynamic aperture and momentum acceptance. In this paper we explore a different approach based on a 7BA lattice with distributed chromatic correction. This lattice relies heavily on longitudinal gradient bends and reverse bending in order to suppress the emittance so that despite fewer bends an emittance comparable to the baseline lattice can be reached albeit with larger dynamic aperture and momentum acceptance. We present linear optics design, trade-offs between achievable emittance and longitudinal stability, as well as the employed nonlinear tuning approach and the resulting performance of this alternate lattice.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF077  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)