Paper | Title | Page |
---|---|---|
MOPMF016 | Progress on RCS eRHIC Injector Design | 115 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. We have refined the design for the Rapid Cycling Synchrotron (RCS) polarized electron injector for eRHIC. The newer design includes bypasses for the eRHIC detectors and definition of the lattice layout in the existing RHIC tunnel. Additionally, we provide more details on the RF, alignment and orbit control, and magnet specifications. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF016 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUXGBD1 | Potential and Issues for Future Accelerators and Ultimate Colliders | 578 |
|
||
Particle colliders have been remarkably successful tools in particle and nuclear physics. What are the future trends and limitations of accelerators as they currently exist, and are there possible alternative approaches? What would the ultimate collider look like? This talk examines some challenges and possible solutions. Accelerating a single particle rather than a thermal distribution may allow exploration of more controlled interactions without background. Also, cost drivers are possibly the most important limiting factor for large accelerators in the foreseeable future so emerging technologies to reduce cost are highlighted. | ||
![]() |
Slides TUXGBD1 [2.585 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUXGBD1 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUYGBD3 | eRHIC Design Status | 628 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The electron-ion collider eRHIC aims at a luminosity around 1034cm-2sec-1, using strong cooling of the hadron beam. Since the required cooling techniques are not yet readily available, an initial version with a peak luminosity of 3*1033cm-2sec-1 is being developed that can later be outfitted with strong hadron cooling. We will report on the current design status and the envisioned path towards 1034cm-2sec-1 luminosity. |
||
![]() |
Slides TUYGBD3 [11.790 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUYGBD3 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUYGBE2 | CBETA, the 4-Turn ERL with SRF and Single Return Loop | 635 |
|
||
Funding: Supported by NSF award DMR-0807731, DOE grant DE-AC02-76SF00515, and NYSERDA. A collaboration between Cornell University and Brookhaven National Laboratory has designed and is constructing CBETA, the Cornell-BNL ERL Test Accelerator on the Cornell campus. The ERL technology that has been prototyped at Cornell for many years is being used for this new accelerator, including a DC electron source and an SRF injector Linac with world-record current and normalized brightness in a bunch train, a high-current linac cryomodule optimized for ERLs, a high-power beam stop, and several diagnostics tools for high-current and high-brightness beams. BNL has designed multi-turn ERLs for several purpose, dominantly for the electron beam of eRHIC, its Electron Ion Collider (EIC) project and for the associated fast electron cooling system. Also in JLEIC, the EIC designed at JLAB, an ERL is envisioned to be used for electron cooling. The number of transport lines in an ERL is minimized by using return arcs that are comprised of a Fixed Field Alternating-gradient (FFA) design. This technique will be tested in CBETA, which has a single return for the 4-beam energies with strongly-focusing permanent magnets of Halbach type. The high-brightness beam with 150~MeV and up to 40~mA will have applications beyond accelerator research, in industry, in nuclear physics, and in X-ray science. Low current electron beam has already been sent through the most relevant parts of CBETA, from the DC gun through both cryomodules, through one of the 8 similar separator lines, and through one of the 27 similar FFA structures. Further construction is envisioned to lead to a commissioning start for the full system early in 2019. |
||
![]() |
Slides TUYGBE2 [17.343 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUYGBE2 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPMF024 | Validation of the Halbach FFAG Cell of Cornell-BNL Energy Recovery Linac | 1304 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The optical properties of the Halbach technology based CBETA ERL return FFAG arc cell are investigated, using its 3-D OPERA field map model. This includes paraxial and large amplitude motion, tune path, study of resonances, dynamic acceptance, effects of various defects, 300-cell 10k-particle bunches 6D transmission trials. These investigations, a 2~3 year investment, have validated the Halbach technology in the linear FFAG cell application, from the point of view of the beam dynamics, so supporting its approval as the required technology for CBETA, in December 2016. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF024 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAF021 | Start to End Simulation of the CBETA Energy Recovery Linac | 2993 |
|
||
Funding: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. CBETA is an energy recovery linac accelerating from 6 MeV to 150 MeV in four linac passes, using a single return line accepting all energies from 42 MeV to 150 MeV. We simulate a 6-dimensional particle distribution from the injector through the end of the dump line. Space charge forces are taken into account at the low energy stages. We compare results using field maps to those using simpler magnet models. We introduce random and systematic magnet errors to the lattice, apply an orbit correction algorithm, and study the impact on the beam distribution. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAF023 | The Beam Optics of the FFAG Cell of the CBETA ERL Accelerator | 3000 |
|
||
Funding: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. The Cornell-Brookhaven Energy Recovery Linac Test Accelerator now under construction will accelerate electrons from 6 MeV to 150 MeV in four linac passes, using a single return line accepting all energies from 42 to 150 MeV. We describe the optical design of the machine, with emphasis on recent updates. We explain how we choose parameters for the wide energy acceptance return arc, taking into account 3D field maps generated from magnet designs. We give the final machine parameters resulting from iterations between desired lattice properties and magnet design. We modified the optics to improve the periodicity of the return arc near its ends and to create adequate space for vacuum hardware. The return arc is connected to the linac with splitter lines that serve to match the optics for each beam energy. We describe how matching conditions were chosen for the splitter lines and how we use them to control longitudinal motion. We simulate the injection and low energy extraction systems including space charge effects, matching the beam properties to the optical parameters of the rest of the machine. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF023 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |