Paper | Title | Page |
---|---|---|
MOPMF053 | Observations, Analysis and Mitigation of Recurrent LHC Beam Dumps Caused by Fast Losses in Arc Half-Cell 16L2 | 228 |
|
||
Recurrent beam dumps significantly perturbed the operation of the CERN LHC in the summer months of 2017, especially in August. These unexpected beam dumps were triggered by fast beam losses that built up in the cryogenic beam vacuum at the half-cell 16 left of LHC-IP2 and were detected either at that location but mainly in the collimation insertions. This contribution details the experimental observables (beam losses, coherent instabilities, heat load to cryogenic system, vacuum signals), the extent of the understanding of the beam loss and instability mechanisms and the mitigation steps and new settings that allowed recovering the luminosity performance of the LHC for the rest of the Run. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF053 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPMF087 | LHC Injectors Upgrade Project: Outlook of the Modifications to the Super Proton Synchrotron (SPS) Vacuum System and Impact on the Operation of the Carbon-Coated Vacuum Chambers | 2589 |
|
||
Aiming at doubling the beam intensity and reducing the beam emittance, significant modifications of the LHC and its injector chain will take place during Long Shutdown 2 (LS2), starting from 2019. The LIU project (LHC Injector Upgrade), in the specific, touches Linac4, the Proton Synchrotron Booster (PSB), the Proton Synchrotron (PS), the Super Proton Synchrotron (SPS) as well as the heavy ion chain. During LS2, important changes will take place mainly in the Long Straight Sections of the SPS to host a newly conceived dumping system, upgraded RF cavities and upgraded extraction channels. Additionally, the vacuum chambers of the main bending and focusing magnets as well as vacuum drifts will be coated with amorphous carbon in order to reduce the dynamic pressure effects induced by multipacting. The modifications to the different vacuum sectors will be described in details as well as the impact on operation of amorphous carbon coated sectors that have been already deposited. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF087 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPMF090 | Upgrade of the CMS Experimental Beam Vacuum During LS2 | 2596 |
|
||
Starting from December 2018, the Large Hadron Collider (LHC) is going to interrupt its physic operations for more than two years within the period called second long shutdown (LS2). The Compact Muon Solenoid (CMS) experiment will undergo the biggest upgrade of its experimental beam vacuum system since the first operations in 2008. The new experimental vacuum layout should comply with demanding structural, vacuum, integration and physics requirements. Moreover, the new layout should be compatible with foreseen engineering changes of the detector and the machine during the upgrade phase of High-Luminosity LHC in LS3. This paper gives an overview of the CMS LS2 experimental vacuum sectors upgrades. Both design and production phase of the new vacuum layout is discussed in detail. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF090 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPMK003 | An Upgraded LHC Injection Kicker Magnet | 2632 |
|
||
Funding: Work supported by the HL-LHC project. An upgrade of the LHC injection kickers is necessary for HL-LHC to avoid excessive beam induced heating of these magnets: the intensity of the HL-LHC beam will be twice that of LHC. In addition, in the event that it is necessary to exchange an injection kicker magnet, the newly installed kicker magnet would limit HL-LHC operation for a few hundred hours due to dynamic vacuum activity. Extensive studies have been carried out to identify practical solutions to these problems: these include redistributing a significant portion of the beam induced power deposition to ferrite parts of the kicker magnet which are not at pulsed high voltage and water cooling of these parts. Furthermore a surface coating, to mitigate dynamic vacuum activity, has been selected. The results of these studies, except for water cooling, have been implemented on an upgraded LHC injection kicker magnet: this magnet was installed in the LHC during the 2017-18 Year End Technical Stop. This paper presents the upgrades, including some test and measurement results. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMK003 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |