Author: Bishofberger, K.
Paper Title Page
TUXGBF2 Higher-Order-Mode Effects in Tesla-Type Superconducting RF Cavities on Electron Beam Quality 612
 
  • A.H. Lumpkin, N. Eddy, D.R. Edstrom, P.S. Prieto, J. Ruan, R.M. Thurman-Keup
    Fermilab, Batavia, Illinois, USA
  • K. Bishofberger, B.E. Carlsten
    LANL, Los Alamos, New Mexico, USA
  • O. Napoly
    CEA/DSM/IRFU, France
 
  Funding: *Work at Fermilab supported by FRA, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Dept. of Energy. **Work at LANL supported by U.S. Dept. of Energy through the LANL/LDRD Program.
We report the direct observations of the correlation of higher order modes (HOMs) generated by off-axis electron beam steering in TESLA-type SCRF cavities and sub-macropulse beam centroid shifts (with the concomitant effect on averaged beam size and emittance). The experiments were performed at the Fermilab Accelerator Science and Technology (FAST) facility using its unique configuration of a PC rf gun injecting beam into two separated 9-cell cavities in series with corrector magnets and beam position monitors (BPMs) located before, between, and after them. The ~100-kHz oscillations with up to 300-μm amplitudes at downstream locations were observed in a 3-MHz micropulse repetition rate beam with charges of 500 and 1000 pC/b, although the effects were much reduced at 100 pC/b. The studies were based on HOM detector circuitry targeting the first and second dipole passbands, rf BPM bunch-by-bunch data, and imaging cameras viewing multi-slit images for emittance assessments at 33 MeV. Initial calculations reproduced a key feature of the phenomena. In principle, these results may be scaled to cryomodule configurations of major accelerator facilities.
 
slides icon Slides TUXGBF2 [3.631 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUXGBF2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL024 A Simple Variable Focus Lens for Field Emitter Cathodes 3677
 
  • R.L. Fleming, H.L. Andrews, K. Bishofberger, D. Kim, J.W. Lewellen, K.E. Nichols, D.Y. Shchegolkov, E.I. Simakov
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Los Alamos National Laboratory LDRD Program
We present the design for a simple, variable-focus solenoidal lens with integrated emittance filtering. The design was developed as a first-iteration injection optics solution for transport of a beam from a field-emitter cathode into a dielectric laser accelerator structure. The design is easy to fabricate and, while based on permanent magnets, can readily be modified to allow for remote control of the focal length. The emittance is controlled via selection of collimating irises. The focal length can be changed by altering the spacing between two permanent ring magnets. Results from fabrication and initial testing will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)