Paper | Title | Page |
---|---|---|
MOPML050 | A Massive Open Online Course on Particle Accelerators | 512 |
|
||
Funding: European Union H2020 - ARIES Project The TIARA (Test Infrastructure and Accelerator Research Area) project funded by the European Union 7th framework programme made a survey of provision of education and training in accelerator science in Europe highlighted the need for more training opportunities targeting undergraduate-level students. This need is now being addressed by the European Union H2020 project ARIES (Accelerator Research and Innovation for European Science and Society) via the preparation of a Massive Online Open Course (MOOC) on particle accelerator science and engineering. We present here the current status of this project, the main elements of the syllabus, how it will be delivered, and the schedule for providing the course. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML050 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAK023 | Proposal for Using DAΦNE as Pulse Stretcher for the Linac Positron Beam | 3258 |
|
||
The PADME experiment* proposes a search for the dark photon (A') in the e+e− -> gamma A' process in a positron-on-target experiment, exploiting the positron beam of the DAΦNE linac at the Frascati National Laboratory. The linac could provide a number of positrons as high as 109/pulse in a 200 ns pulse but the number of positrons for PADME is limited below 105/pulse in order to keep the pile-up probability in the calorimeter low enough. The PADME experiment is indeed limited by the low duty factor (10e-5=200ns/20ms). An alternative proposal to use the DAΦNE positron ring as a linac pulse stretcher, by injecting each pulse into the ring and extracting it by a slow resonant extraction using the m/3 resonance, is described in this paper. This allows to distribute the positrons of a linac pulse in a much longer pulse (0.2 - 0.5 ms) increasing the duty factor up to ~ 2%. The required modifications of the DAΦNE positron transfer line and main ring are presented. A dedicate lattice for the ring has been designed and tracking of the positrons in the ring has been performed to optimize extraction parameters and give a preliminary estimate of the extracted beam characteristics.
* M. Raggi et al., EPJ Web Conf. 96 (2015) 01025 |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK023 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |