Author: Benson, S.V.
Paper Title Page
MOPMK015 Development of a Bunched-Beam Electron Cooler for the Jefferson Lab Electron-Ion Collider 382
 
  • S.V. Benson, Y.S. Derbenev, D. Douglas, F.E. Hannon, A. Hutton, R. Li, R.A. Rimmer, Y. Roblin, C. Tennant, H. Wang, H. Zhang, Y. Zhang
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S.DOE Contract No. DE-AC05-06OR23177.
Jefferson Lab is in the process of designing an electron-ion collider with unprecedented luminosity at a 65 GeV center-of-mass energy. This luminosity relies on ion cooling in both the booster and the storage ring of the accelerator complex. The cooling in the booster will use a conventional DC cooler similar to the one at COSY. The high-energy storage ring, operating at a momentum of up to 100 GeV/nucleon, requires novel use of bunched-beam cooling. We will present a new design for a Circulator Cooler Ring for bunched-beam electron cooling. This requires the generation and transport of very high-charge magnetized bunches, acceleration of the bunches in an energy recovery linac, and transfer of these bunches to a circulating ring that passes the bunches 11 times through the proton or ion beam inside cooling solenoids. This design requires the suppression of the effects of space charge and coherent synchrotron radiation using shielding and RF compensation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMK015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML006 Multi-Stage Electron Cooling Scheme for JLEIC 397
 
  • H. Zhang, S.V. Benson, Y.S. Derbenev, Y. Roblin, Y. Zhang
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 and DE-AC02-06CH11357.
JLEIC is the future electron ion collider under design at Jefferson Lab, which will provide a luminosity up to 1034 cm-2s-1. Electron cooling is essential for JLEIC to overcome the intrabeam scattering effect, reduce the ion beam emittance and thus achieve the high luminosity. The cooling time is approximately in proportion to the square of the energy and the 6D emittance. To avoid the difficulty of cooling the ion beam with large emittance at high energy, a multi-stage cooing scheme was designed for JLEIC. The ion beam was cooled at the low energy to reduce the emittance. Then it was ramped up to the collision energy. During the collision, electron cooling is implemented to maintain the emittance and the luminosity. Simulations for proton beam and lead ion beam at various stages are presented in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK106 Architectural Considerations for Recirculated and Energy-Recovered Hard XFEL Drivers 4560
 
  • D. Douglas, S.V. Benson, T. Powers, Y. Roblin, T. Satogata, C. Tennant
    JLab, Newport News, Virginia, USA
  • D. Angal-Kalinin, N. Thompson, A.E. Wheelhouse, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • T.K. Charles
    CERN, Geneva, Switzerland
  • R.C. York
    FRIB, East Lansing, Michigan, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
A confluence of events motivates discussion of design options for hard XFEL driver accelerators. Firstly, multiple superconducting radio-frequency (SRF) driven systems are now online (European XFEL), in construction (LCLS-II), or in design (MARIE); these provide increasing evidence of the transformational potential they offer for fundamental science with its concomitant benefits. Secondly, operation of 12 GeV CEBAF* validates use of recirculation in high energy SRF linacs. Thirdly, advances in the analysis and control of effects such as coherent synchrotron radiation (CSR) and the microbunching instability (uBI) have been recently achieved. Collectively, these developments offer insights providing extended facility science reach, reduced costs, multiplicity (i.e., support of numerous FELs operating over a range of wavelengths), and enhanced scalability and upgradability (to higher powers and energies). We will discuss the relationship amongst the various threads, and indicate how they inform design choices for the system architecture of an option for the UK-XFEL** - that of a staged multi-user X-ray FEL and nuclear physics facility based on a multi-pass recirculating SRF CW linac.
*M. Spata, "12 GeV CEBAF Initial Operations and Challenges", these proceedings.
**P. Williams et al., Proc. FLS2018, Shanghai, China (March 2018).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK106  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)