Author: Benedetti, G.
Paper Title Page
TUPML078 Fast Quadrupole Beam Based Alignment Using AC Corrector Excitations 1727
 
  • Z. Martí, G. Benedetti, U. Iriso
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  A novel method to perform Beam Based Alignment has been tested at ALBA using the 10kHz fast acquisition BPMs together with an AC excitation of the corrector magnets allowing to speed up the beam based alignment process. The former approach relies on software synchronization and tango device servers to execute a series of DC corrector magnets and quadrupoles settings designed to avoid the quadrupole hysteresis effects. The approach that we present here is simpler, gives the same level of accuracy and precision and speeds up the measurement by a factor 10. The total measurement time has changed from 5 hours to 10 minutes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML078  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF002 Studies for Injection with a Pulsed Multipole Kicker at ALBA 4030
 
  • G. Benedetti, U. Iriso, M. Pont, D. Ramos Santesmases
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • E. Ahmadi
    ILSF, Tehran, Iran
 
  Injection into the ALBA storage ring presently uses a conventional local injection bump with four dipole kickers. However, following the promising results of the first tests with single multipole kicker injection at other light sources, studies to implement this new injection scheme have been started for ALBA. Two possible designs for the kicker have been considered: a pure octupole and a non-linear magnet similar to the BESSY type. A comparison between the expected performances of the two kicker designs has been carried out in terms of injection efficiency and transparency for the users. This paper summarises the beam dynamics results from multi-particle tracking simulations and the proposed kicker magnet design.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)