Author: Ben-Zvi, I.
Paper Title Page
MOPMF020 Higher Order Mode Coupling Options for the eRHIC Crab Cavity 121
 
  • Q. Wu, I. Ben-Zvi, S. Verdú-Andrés, B. P. Xiao
    BNL, Upton, Long Island, New York, USA
  • I. Ben-Zvi
    Stony Brook University, Stony Brook, USA
 
  Funding: This work was supported by the US Department of Energy via Brookhaven Science Associates LLC under contract no. DE-SC0012704.
The eRHIC crab cavity adopts the double quarter wave structure developed at Brookhaven National Lab for the LHC Hi-Lumi upgrade crab cavities. The cavity's fundamental mode is at 338 MHz with the first higher order mode more than 180 MHz above that. We looked into the higher order mode distribution up to 2 GHz, and considered various locations and geometries of the coupling scheme. The cylindrical outer shell of the cavity allowed various possibilities for coupler port openings on all the walls, which were difficult for the narrow waist of the LHC double quarter wave crab cavities. Beam pipe absorbers are also options for simpler high frequency modes damping. Some preliminary high pass filter design will also be discussed in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMF012 Power Requirement and Preliminary Coupler Design for the eRHIC Crab Cavity System 2394
 
  • S. Verdú-Andrés, I. Ben-Zvi, D. Holmes, Q. Wu
    BNL, Upton, Long Island, New York, USA
  • I. Ben-Zvi
    Stony Brook University, Stony Brook, USA
 
  Funding: Work supported by Brookhaven Science Associates LLC under contract no. DE-SC0012704 with the U.S. Department of Energy.
Crab cavities are deflecting cavities operated in such a way that the bunch center is in synchronism with the zero-crossing kick voltage. In that case, beam loading is zero for an on-axis beam. The crab cavity system of the future electron-ion collider eRHIC will manipulate 275 GeV proton beams. At high energies, the beam offset can be as large as 2 mm (including mechanical and electrical offset tolerances). The beam loading resulting from such offset can greatly incur in large power requirements to the RF amplifier. The choice of external Q for the Fundamental Power Coupler (FPC) is critical to limit the power requirement to practical values. The loaded Q of the eRHIC crab cavities is mainly governed by the external Q of the FPC, so the external Q will also define the cavity bandwidth and thus the tuning requirements to counteract frequency transients from external perturbations. This paper discusses the choice of external Q for the FPC of the eRHIC crab cavities and introduces the design of a preliminary FPC antenna concept that would provide the appropriate external Q.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK116 Modeling Surface Roughness Effects and Emission Properties of Bulk and Layered Metallic Photocathode 3515
 
  • D.A. Dimitrov, G.I. Bell
    Tech-X, Boulder, Colorado, USA
  • I. Ben-Zvi, J. Smedley
    BNL, Upton, Long Island, New York, USA
  • J. Feng, S.S. Karkare, H.A. Padmore
    LBNL, Berkeley, California, USA
 
  Funding: This work was supported by the Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract Nos. DE-SC0013190, DE-AC02-05CH11231, and KC0407-ALSJNT-I0013.
The thermal limit of the intrinsic emittance of photocathodes represents an important property to measure experimentally and to understand theoretically. Detailed measurements of intrinsic emittance have become possible in momentatron experiments. Moreover, recent developments in material design have allowed growing photoemissive layers with controlled surface roughness. Although analytical formulations of the effects of roughness have been developed, a full theoretical model and experimental verification are lacking. We aim to bridge this gap by developing realistic models for different materials in the three-dimensional VSim particle-in-cell code. We have recently implemented modeling of electron photo-excitation, transport, and emission from photoemissive layers grown on a substrate. We report results from simulations with these models on electron emission from antimony and gold. We consider effects due to density of states, photoemissive layer thickness, surface roughness and how they affect the spectral response of quantum yield and intrinsic emittance.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK116  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)