Author: Barnyakov, A.M.
Paper Title Page
MOPMF034 Layout and Performance of the FCC-ee Pre-Injector Chain 169
 
  • S. Ogur, T.K. Charles, K. Oide, Y. Papaphilippou, L. Rinolfi, F. Zimmermann
    CERN, Geneva, Switzerland
  • A.M. Barnyakov, A.E. Levichev, P.V. Martyshkin, D.A. Nikiforov
    BINP SB RAS, Novosibirsk, Russia
  • I. Chaikovska, R. Chehab
    LAL, Orsay, France
  • K. Furukawa, N. Iida, T. Kamitani, F. Miyahara
    KEK, Ibaraki, Japan
  • E.V. Ozcan
    Bogazici University, Bebek / Istanbul, Turkey
  • S.M. Polozov
    MEPhI, Moscow, Russia
 
  The Future Circular e+e Collider pre-injector chain consists of a 6 GeV S-Band linac, a damping ring at 1.54 GeV and pre-booster ring to reach 20 GeV for injection to the main booster. The electron and positron beams use the same accelerator chain alternatively. The e+ beam is generated from a novel low level RF-gun providing 6.5 nC charge at 11 MeV with 0.5 micron geometric emittance. The e+ beam is produced by the impact of a 4.46 GeV e- beam onto a hybrid target, accelerated in the linac up to 1.54 GeV, and injected to the damping ring for emittance cooling. Simulations on the performance of the DR are presented for reaching the required equilibrium emittances at the required damping time. As an alternative option, a 20 GeV linac is considered utilising C-Band cavities and simulations studies have been undertaken regarding the beam transport and transmission efficiency up to that energy.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)