Author: Baglin, V.
Paper Title Page
MOZGBE5 Results on the FCC-hh Beam Screen at the KIT Electron Storage Ring KARA 55
 
  • L.A. Gonzalez, V. Baglin, P. Chiggiato, C. Garion, M. Gil Costa, R. Kersevan
    CERN, Geneva, Switzerland
  • I. Bellafont, F. Pérez
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • S. Casalbuoni, E. Huttel
    KIT, Eggenstein-Leopoldshafen, Germany
 
  Funding: * The European Circular Energy-Frontier Collider Study (EuroCirCol) project has received funding from the European Union's Horizon 2020 research and innovation programme under grant No 654305.
In the framework of the EuroCirCol collaboration* (work package 4 "Cryogenic Beam Vacuum System"), the fabrication of 3 FCC-hh beam-screen (BS) prototypes has been carried out with the aim of testing them at room temperature at the Karlsruhe Institute of Technology (KIT) 2.5 GeV electron storage ring KARA (KArlsruhe Research Accelerator). The 3 BS prototypes will be tested on a beamline installed by the collaboration, named as BEam Screen TEstbench EXperiment (BESTEX). KARA has been chosen because its synchrotron radiation (SR) spectrum, photon flux and power, match the one foreseen for the 50+50 TeV FCC-hh proton collider. Each of the 3 BS prototypes, 2 m in length, implement a different design feature: 1) baseline design (BD), with electro-deposited copper and no electron-cloud (EC) mitigation features; 2) BD with set of distributed cold-sprayed anti-EC clearing electrodes; 3) BD with laser-ablated anti-EC surface texturing. We present here the results obtained so far at BESTEX and the comparison with extensive montecarlo simulations of the expected outgassing behavior under synchrotron radiation.
The information herein only reflects the views of its authors and the European Commission is not responsible for any use that may be made of the information.
 
slides icon Slides MOZGBE5 [4.318 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOZGBE5  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZGBE3 Towards Implementation of Laser Engineered Surface Structures for Electron Cloud Mitigation 1220
 
  • M. Sitko, V. Baglin, S. Calatroni, P. Chiggiato, B. Di Girolamo, E. Garcia-Tabares Valdivieso, M. Taborelli
    CERN, Geneva, Switzerland
  • A. Abdolvand, D. Bajek, S. Wackerow
    University of Dundee, Nethergate, Dundee, Scotland, United Kingdom
  • M. Colling, T.J. Jones, P.A. McIntosh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  The LHC operation has proven that the electron cloud could be a significant limiting factor in machine performance, in particular for future High Luminosity LHC (HL-LHC) beams. Electron clouds, generated by electron multipacting in the beam pipes, leads to beam instabilities and beam-induced heat load in cryogenic systems. Laser Engineered Surface Structures (LESS) is a novel surface treatment which changes the morphology of the internal surfaces of vacuum chambers. The surface modification results in a reduced secondary electron yield (SEY) and, consequently, in the eradication of the electron multipacting. Low SEY values of the treated surfaces and flexibility in choosing the laser parameters make LESS a promising treatment for future accelerators. LESS can be applied both in new and existing accelerators owing to the possibility of automated in-situ treatment. This approach has been developed and optimised for the LHC beam screens in which the electron cloud has to be mitigated before the HL-LHC upgrade. We will present the latest steps towards the implementation of LESS.  
slides icon Slides TUZGBE3 [1.825 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUZGBE3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMG005 First Beam Test of Laser Engineered Surface Structures (LESS) at Cryogenic Temperature in CERN SPS Accelerator 2616
 
  • R. Salemme, V. Baglin, S. Calatroni, P. Chiggiato, B. Di Girolamo, E. Garcia-Tabares Valdivieso, B. Jenninger, L. Prever-Loiri, M. Sitko
    CERN, Geneva, Switzerland
  • A. Abdolvand, S. Wackerow
    University of Dundee, Nethergate, Dundee, Scotland, United Kingdom
  • R. Salemme
    ITER Organization, St. Paul lez Durance, France
 
  Electron cloud mitigation is an essential requirement for accelerators of positive particles with high intensity beams to guarantee beam stability and limited heat load in cryogenic systems. Laser Engineered Surface Structures (LESS) are being considered, within the High Luminosity upgrade of the LHC collider at CERN (HL-LHC), as an option to reduce the Secondary Electron Yield (SEY) of the surfaces facing the beam, thus suppressing the elec-tron cloud phenomenon. As part of this study, a 2.2 m long Beam Screen (BS) with LESS has been tested at cryogenic temperature in the COLD bore EXperiment (COLDEX) facility in the SPS accelerator at CERN. In this paper, we describe the manufacturing procedure of the beam screen, the employed laser treatment technique and discuss our first observations in COLDEX confirming electron cloud suppression.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMG005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)