Author: Appleby, R.B.
Paper Title Page
TUPAF029 Observation of Fast Losses in the LHC Operation in 2017 740
 
  • A.A. Gorzawski, N. Fuster-Martínez, S. Redaelli, C. Xu, C. Zamantzas
    CERN, Geneva, Switzerland
  • R.B. Appleby
    UMAN, Manchester, United Kingdom
  • H. Garcia Morales
    Royal Holloway, University of London, Surrey, United Kingdom
 
  Four diamond detectors that provide beam loss measurements with time resolution in the nanosecond range were added in the vicinity of the primary collimators of the Large Hadron Collider (LHC). This is a powerful diagnostic tool that provides the unique chance to measure bunch-by-bunch losses. The operation of the LHC in 2017 presented several unusual events of fast, high intensity beam losses, many of them captured by the diamond detectors in the betatron cleaning region. In this paper we review some of the relevant loss cases that were analyzed in the wider scope of determining the source of the instability generating these losses. We show few of the possible applications of this detectors in daily operations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK140 Pyroelectric Detection of Coherent Radiation on the CLARA Phase 1 Beamline 3577
SUSPF077   use link to see paper's listing under its alternate paper code  
 
  • B.S. Kyle
    University of Manchester, Manchester, United Kingdom
  • R.B. Appleby, T.H. Pacey
    UMAN, Manchester, United Kingdom
  • P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • J. Wolfenden
    The University of Liverpool, Liverpool, United Kingdom
 
  The impacts of coherent synchrotron radiation (CSR) and space charge in the bunch compressor section of the CLARA Free Electron Laser (FEL) are expected to be significant, given the relatively high charge and short bunch lengths expected. The General Particle Tracer (GPT) code allows for the modelling of these effects in tandem, presenting an opportunity to more reliably estimate their effects on the CLARA beam. To provide confidence in future studies using GPT, a benchmarking study on the CLARA Phase 1 beamline is presented alongside relevant simulations. This study will make use of pyroelectric detectors to measure the emitted coherent power of the CLARA beam as it passes through a dispersive section whilst varying the chirp imparted on the bunches longitudinal phase space (LPS). Simulations presented demonstrate the viability of such a study, with energies between ∼ 10-100 nJ per pulse expected to be incident upon the detector face.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK140  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)