Author: Alden, S.E.
Paper Title Page
WEPAL072 A Novel Longitudinal Laserwire to Non-Invasively Measure 6-Dimensional Bunch Parameters at High Current Hydrogen Ion Accelerators 2349
 
  • S.M. Gibson, A. Bosco
    Royal Holloway, University of London, Surrey, United Kingdom
  • S.E. Alden, A. Bosco, S.M. Gibson
    JAI, Egham, Surrey, United Kingdom
  • A.P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • J.K. Pozimski
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • J.K. Pozimski
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
 
  Funding: We acknowledge funding by the STFC Grant ST/P003028/1 and the John Adams Institute at Royal Holloway, University of London.
Optical methods for non-invasive beam diagnostics of high current H ion accelerators have been developed in recent years*, **. Such laserwires typically measure a 1D beam profile and/or 2D transverse emittance from the products of photo-detached ions as a laser beam is scanned across the H beam. For laser pulse durations (~80ns) longer than the RF period (~3ns), the detector integrates many complete bunches, enabling only transverse beam monitoring. This paper presents a new technique to capture a series of time resolved transverse emittance measurements along the bunch train. A fast (~10ps) pulsed laser photo-detaches ions within each bunch and is synchronized to sample consecutive bunches at certain longitudinal positions along each bunch. A fast detector records the spatial distribution and time-of-flight of the neutralized H0, thus both the transverse and longitudinal emittance are reconstructed. We present simulations of a time varying pulsed laser field interacting within an H bunch, and estimate the yield, spatial and time distributions of H0 arriving at the detector. We summarise the design of a recently funded longitudinal laserwire being installed in FETS at RAL, UK.
* NIM-A, 830, p526-531, T. Hofmann et al
** T. Hofmann et al, 'Commissioning of the Operational Laser Emittance Monitors for LINAC4 at CERN' IPAC18.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAL072  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)