Paper | Title | Page |
---|---|---|
WEPML008 | Tuner Testing of a Dressed 3.9 GHz Cavity for LCLS-II at Fermilab | 2690 |
|
||
Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. Fermilab is responsible for the design of the 3.9 GHz cryomodule for LCLS-II. Integrated acceptance testing of a dressed 3.9 GHz cavity for the LCLS-II project has been done at the Fermilab Horizontal Test Stand. This test included a slim blade tuner (based on INFN & XFEL designs) with integrated piezoelectric fast/fine tuner. This paper will present results of the mechanical setup, cold testing, and cold function of this tuner including fast and slow tuner range, sensitivity, and hysteresis. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML008 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPML013 | Anti-Q-slope enhancement in high-frequency niobium cavities | 2707 |
|
||
N-doped 1.3 GHz niobium cavities showed for the first time the so-called anti-Q-slope, i.e. the increasing of the Q-factor as a function of the accelerating field. It was verified that the anti-Q-slope is consequence of the decreasing of the temperature-dependent component of the surface resistance as a function of the field. This trend is opposite compared to the increasing of the surface resistance previously observed in 1.3 GHz standard (EP, BCP, 120 C baked) niobium cavities. The effect of the different state-of-the-art surface treatments on the field dependence of the surface resistance is studied for 650 MHz, 1.3 GHz, 2.6 GHz and 3.9 Ghz cavities. This proceeding shows that the field dependence of the temperature-dependent component of the surface resistance has a strong frequency dependence and that the anti-Q-slope may appear even in clean niobium cavities if the resonant frequency is high enough, suggesting new routes toward the understanding of the anti-Q-slope effect. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML013 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPML023 | Design and Test Results of the 3.9 GHz Cavity for LCLS-II | 2730 |
|
||
The LCLS-II project uses sixteen 3.9 GHz superconduct-ing cavities to linearize energy distribution before the bunch compressor. To meet LCLS-II requirements origi-nal FNAL design used in FLASH and XFEL was signifi-cantly modified to improve performance and provide reliable operation up to 16 MV/m in cw regime [1-3]. Four prototype cavities were built and tested at vertical cryo-stat. After dressing, one cavity was assembled and tested at horizontal cryostat as part of design verification pro-gram. All auxiliaries (magnetic shielding, power and HOM couplers, tuner) were also re-designed and tested with this cavity. In this paper we will discuss cavity and coupler design and test results. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML023 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |