
Rich Neswold
ICALEPCS - User Interfaces, Perspective, and Experience
October 9th, 2019

The Web as the Primary Control
System User Interface

Rich Neswold I The Web as the Primary Control System User Interface 10/09/19

Why Web Technologies?*

• All major browser cores track standards
- Bleeding-edge JavaScript
- Support latest HTML/CSS specs
- Great developer tools
• JavaScript engines are fast
• Benefit from huge collaboration in JS ecosystem
- Companies have a vested interest in the web
• Apps are extremely portable
- Across browsers, operating systems, and form factors (i.e. desktop

and mobile devices)
• Progressive Web Apps

2

*We have a JavaScript module providing full bandwidth to our control system

Rich Neswold I The Web as the Primary Control System User Interface 10/09/19

Built-in Developer Tools

• Debuggers
- Code debugger (breakpoints, single-step, etc.)
- Layout debugger (manipulate DOM tree.)
- Style debugger (tweak CSS attributes.)
• Profilers
- Code profiler
• Shows hot spots
• Measures function execution time
• Measures GPU rendering time
- Memory profiler
• Monitor heap and garbage collector behavior
- Network profiler
• Show network packet timing and contents
• Measures load time of page resources

3

Rich Neswold I The Web as the Primary Control System User Interface 10/09/19

TypeScript

• “Transpiler” created by Microsoft
• Uses JavaScript syntax with extensions
- Adds type annotation to function arguments, variables, 

and object properties
- Adds new types to language (i.e. tuples)
• Converts TypeScript to JavaScript
- Annotations are stripped
- During conversion, extensive type analysis is done
• Finds many silly mistakes at compile-time
• Many 3rd party libraries include TypeScript declaration files
• Highly recommended

4

Rich Neswold I The Web as the Primary Control System User Interface 10/09/19

React (w/JSX)

• Light-weight JavaScript library to build “components”
• Components are stand-alone JavaScript modules that:
- Render themselves as HTML elements
- Manage state associated with their elements
• Components containing components build complex behavior
- Applications are a tree of nested components 

with glue logic to manage state
• JSX allows HTML-like syntax in source
- Gets converted into equivalent DOM calls
- Expressions can be injected in generated elements

5

Rich Neswold I The Web as the Primary Control System User Interface 10/09/19

React Example

import React, { useState } from 'react'  
import './ReactiveInput.css'  
 
interface ReactiveInputProps {  
 label: string,  
 maxLength?: number  
}  
 
const ReactiveInput: React.FunctionComponent<ReactiveInputProps> =  
 ({ label, maxLength = Infinity }) => {  
 const [currInput, setCurrInput] = useState('');  
 
 return ( 
 <div className='reactiveInput'>  
 <label htmlFor='reactiveInput'>{label}</label>  
 <input  
 type='text'  
 name='reactiveInput'  
 value={currInput}  
 onChange={(event) => {setCurrInput(event.target.value)}}  
 />  
 <p className={currInput.length > maxLength ? 'invalid' : ''}>  
 {currInput}  
 </p>  
 </div>  
);  
 };  
 
export default ReactiveInput;

6

Available at 
https://github.com/fermi-controls/icalepcs2019

ReactDOM.render(
 <ReactiveInput
 label=’Hello ICALEPCS 2019’
 maxLength={10} />,
 document.getElementById('root')
);

Rich Neswold I The Web as the Primary Control System User Interface 10/09/19

Development

• Not typical, familiar edit/compile/link cycle
• Build tools have a different focus
- Compatibility between browsers
- Minimizing final bundle size
• Dead code elimination
• Remove comments and unnecessary whitespace
• Shorten identifier names

7

TypeScript Babel WebPack*.tsx

3rd Party 
library source

Web  
Bundle

*.jsx *.js

Rich Neswold I The Web as the Primary Control System User Interface 10/09/19

Example - Charts

8

Chart demo using Nivo Charts (https://nivo.rocks/)

Rich Neswold I The Web as the Primary Control System User Interface 10/09/19

Example - 3D Modeling

WebGL demo using ThreeJS (https://threejs.org/)

9

Rich Neswold I The Web as the Primary Control System User Interface 10/09/19

Still To Do

• Deployment details
- Setting up an area to host applications
- Build system that can properly add new apps
- Directory / Index page to help find available apps
• Security
- Access currently requires client to be on-site or using VPN
- Need authentication credentials for settings, etc.
• Two-factor / YubiKey?
• Kerberos / GSSAPI?

10

Rich Neswold I The Web as the Primary Control System User Interface 10/09/19

Conclusions

• Modern browsers provide a powerful and compelling
environment for hosting acceleration applications.
- There are comprehensive development tools in browsers to handle

all aspects of web development.
• Frameworks provide a professional, intuitive experience for

users, and they hide browser differences from programmers.
• Tools, like TypeScript and JSX, move many run-time issues to

compile-time, making it easier to produce correct code.
• All these technologies are backed by huge companies

(Google, Apple, Microsoft, Facebook, …) that have a stake in
the success of the web.

11

