

smalldata_tools Supporting LCLS data analysis

Silke Nelson, SLAC

With contributions from Henrik Lemke, Chris O'Grady, TJ Lane, Diling Zhu, Tim van Driel, Clemens Weninger and many more.

CLS Linac Coheren

Outline

• Analysis at an FEL: boundary conditions

- Lessons from the past years of operation
- smalldata_tools
 - Default Data
 - Detector Treatment
 - Event binning
- Application Example
 - Timetool calibration
- Conclusions

Analysis at LCLS - Variety in many different ways

- A big machine with a small number instruments, sending photons to one or two end stations at a time
- Large variations between experiments, even in 'standard config'
- Data contains many different sources of data (60+ different data sources for LCLS-I, 10-20 per experiment)
- Optimal detector treatment can depend on physics signal
- Raw data typically on the order of 10s of TB
- User groups vary in size & (computing) expertise
- LCLS Computing resources are limited

What we have learned: Starting point

- File format based on system developed for HEP is used to achieve necessary data writing speed
- Analysis code had to be written in a (C++) framework
- Parallel offer: translation to hdf5 files
- Tension between ease of use, flexibility, efficiency and effort
- User written 'frameworks' have costs when devices/detectors are upgraded, a different instrument is used or the SLAC code stack changes
- Fast turnaround analysis
 - Code should be efficient and be used efficiently
- Consistency: same data, same name; same method, same code

What we have learned: Frameworks

- File format based on system developed for HEP is used to achieve necessary data writing speed
- Analysis code had to be written in a (C++) framework
- Parallel offer: translation to hdf5 files
- Tension between ease of use, flexibility, efficiency and effort
- User written 'frameworks' have costs when devices/detectors are upgraded, a different instrument is used or the SLAC code stack changes
- Fast turnaround analysis
 - Code should be efficient and be used efficiently
- Consistency: same data, same name; same method, same code

What we have learned: Starting point

- File format based on system developed for HEP is used to achieve necessary data writing speed
- Analysis code had to be written in a (C++) framework
- Parallel offer: translation to hdf5 files
- Tension between ease of use, flexibility, efficiency and effort
- User written 'frameworks' have costs when devices/detectors are upgraded, a different instrument is used or the SLAC code stack changes
- Fast turnaround analysis
 - Code should be efficient and be used efficiently
- Consistency: same data, same name; same method, same code

- Users want:
 - Portable data and choice of analysis tools
 - Access to data quickly after a run
 - Simple, instrument agnostic setup
- Staff wants:
 - Conventions for data names
 - Standard methods
 - Predictable code behavior
 - Convenient way to analyze calibration runs

Production

Event-based hdf5 production (smallData)

- Instrument-based default data
- Detector & physics-based data reduction

Detector-based hdf5 production (cube)

Sum over selected events

Analysis

- Quick plots
- Tools to setup data reduction
- Multidimensional binning w/ filtering based on small data
 - Addition of big data
- Notebooks for standard procedures

Instrument Based Default Data

 Names in data files can be cryptic and often differ from names used by staff in discussions while data taking

- Only few variables of a few different detector types are important
- Extract meaningful variables from technical implementation of

DataManager and Automatic Run Processing

Main interface of the user to the data

Data Manager of Experiment : XPP / xpplu2417

Experiment e-Log Run Tables File Manager Workflow Hutch Manager

Name

Definitions

#submit offbyone

#submit smalldata

Control

ld

383

440

- eLog for experiments
- Run Tables

Standard
 Monitoring

Batch Processing

Data Summary

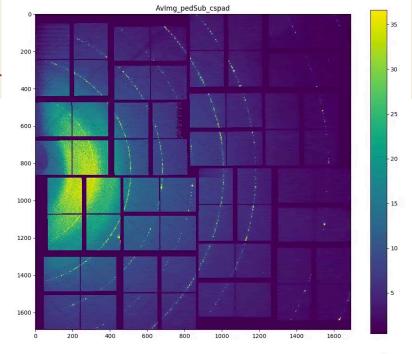
- Definition of scripts to be executed for all runs
 - Pass potential user variation as parameter

Merge Groups

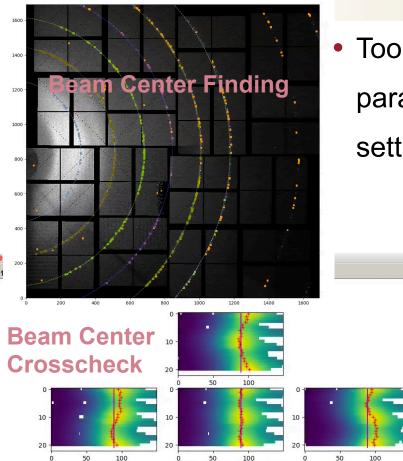
Operations

Executable

/reg/g/psdm/utils/arp/offbyone

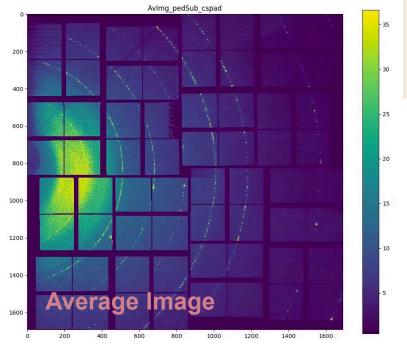

/reg/g/psdm/utils/arp/smalldata

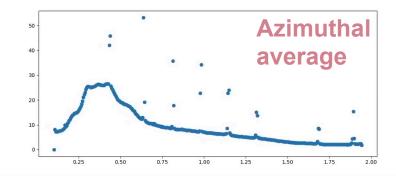
Parar


	🚹 Data Mana	iger o	of Expe	periment : XPP / xpplu2417						
	Experiment e-Log Run	Tables	File Manager	Workflow	Hutcl	h Manager	Operations			
	Standard	Contro	ol Definiti	ons Merge	Group	os				
	Monitoring	Run Nu	mber	Job		Status Actions				
	 Batch Processing 	353 🗮		select a job	\sim					
S	Data Summary			#submit_offbyo	ne	DONE				
		352 🗱		select a job	~					
				#submit_offbyo	ne DONE			×		
		351 🛱		select a job	~					
				#submit_offbyone		DONE		× 🔊		
								-0		
ters		Location		Aut	torun	Delete				
			SLAC	\checkmark			×			
		>	SLAC	\checkmark	(
			SLAC	\sim						

Data Reduction: DetObject

- Define detector object based on its name
- Add methods to be performed
 - ROI (sum, max, center-of-mass, area)
 - Binning, projection, images
 - Azimuthal averaging
 - Droplets (need sparse data)
 - Photon finding (need energy as input)
- Methods can be chained
- Save configuration of feature extraction and detector calibration information hdf5

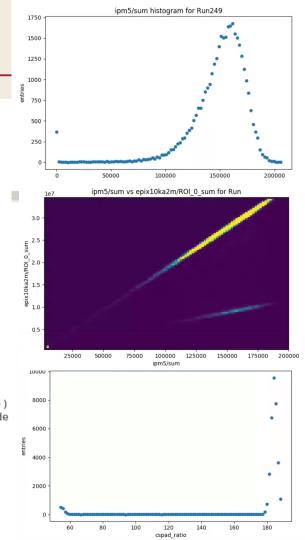

Data Reduction: Tools



50

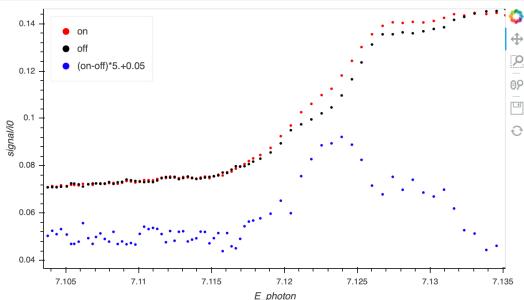
 Tools to make parameter setting easy

50



Plotting & Filtering

- Access to all variables in hdf5 file
- Simple histogram plots and correlation plots
- Filters as sets of square cuts
- Create derived variables and add them to interface for further use


```
SDAna In [2]: ana.addVar('det_i0_ratio', ana.getVar('epix10ka2m/ROI_0_sum') / ana.getVar('ipm5/sum'))
/reg/g/psdm/sw/conda/inst/miniconda2-prod-rhel7/envs/ana-1.4.16/bin/ipython:1: RuntimeWarning: divide
    #!/reg/g/psdm/sw/conda/inst/miniconda2-prod-rhel7/envs/ana-1.4.16/bin/python
SDAna In [3]: ana.addCut('ipm5/sum',50000,1e6,'good')
SDAna In [4]: h2 = ana.plotVar('det_i0_ratio', useFilter='good')
plot det_i0_ratio from 54.4157 to 189.505
SDAna In [5]: ana.addCut('det_i0_ratio',120,1e6,'good')
```


Event Binning

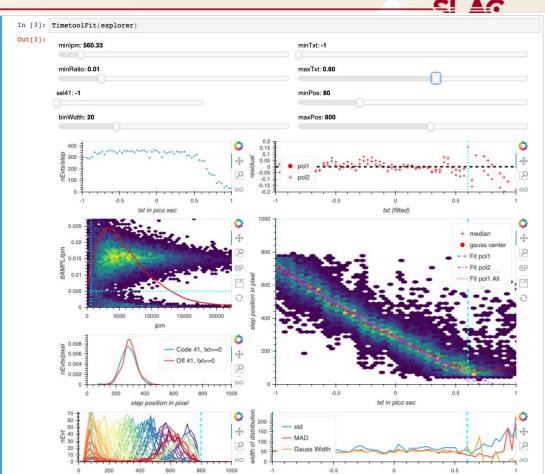
- Instructions to bin data (variable[s] & bin boundaries)
- A filter
- Variables to be binned

Production

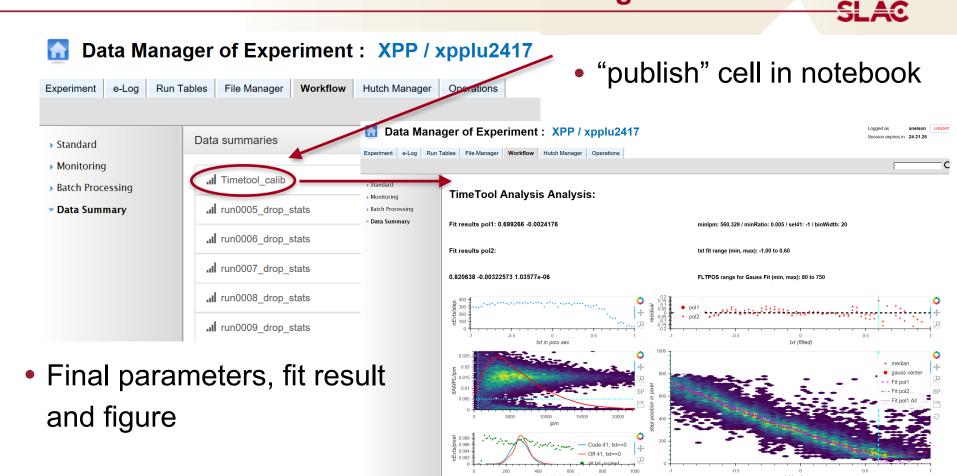
Event-based hdf5 production (smallData)

- Instrument-based default data
- Detector & physics-based data reduction

Detector-based hdf5 production (cube)

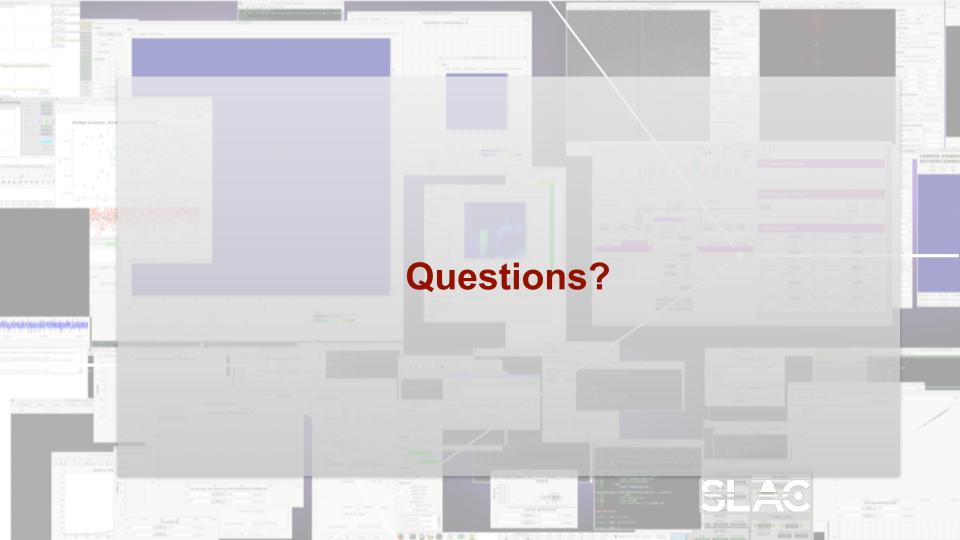

Sum over selected events

Analysis


- Quick plots
- Tools to setup data reduction
- Multidimensional binning w/ filtering based on small data
 - Addition of big data
- Notebooks for standard procedures

Standard Notebooks: Timetool Calibration

- Documentation/ explanations within notebook
- Main cell with all 'knobs' which are pre-set to an optimal value
- Follow-up cell that will create an html file for eLog



Timetool Calibration Result in Data Manager

Summary & Brief Outlook

- Challenge at FEL is the wide variety of analyses/detectors/user expertise
- smalldata_tools has been developed to be
 - Simple to set for 'easy' analyses
 - Extendable for more complicated cases
 - Base for detector monitoring, calibration procedures
- Easy-to-produce hdf5 files w/ hidden MPI integrated to LCLS analysis
- Production via DataManager, true workflow in the future
- Pre-prepared Jupyter notebooks
- 'small' hdf5 production and detector interface also to be used for LCLS-2
- Concepts of event-based small data and binned data present in data access and DRP (data reduction pipeline) for LCLS-2

