Double Crystal Monochromator Control System for the Energy Materials In-Situ Laboratory Berlin

Andreas Balzer
Parvathi Devi
Anna Ziegler
Challenges

- Complex beamline
- Experimental constructions
- >15 EPICS IOCs
- New motion control hardware
- Follow devices on-the-fly or predefined path
- Fast and precise positioning
- Low-level programming on motion controller
- Support of low-level features in higher level software
- Diagnostic tools needed by scientist and software engineers
- Device based framework and adaption to old monochromator control software
Motion Control Hardware
Software Stack

- EPICS IOC
 - Database
 - C++ Model
 - Specific features can be added
- Clients: EMP2, SPEC, LISE, ...
 - Evaluating: Bluesky, Phoebus
 - Display Manager
 - Collaborate, Share Code
 - Python/Jython
 - Reduce overall number of programming languages, tools.

PLC Program

```
... if collision stop motors endif ...
```

Motion Program

```
SPLINE
X Y Z
X Y Z
X Y Z
M33 == 1
X Y Z
...
```
EPICS Support

EPICS CA or DB Access

Device based C++ Design Pattern

Mono Geobrick Controller

PGM / DCM/ Hexapod ...

multiAxis

singleAxis

pmacAxis

PMAC Controller

Motor Record

Mono GUI Tools User

Derived

Used

Mono

GUI

Tools

User
Filters for encoder positions

Types of filters implemented include:

- Exponential filter
- Moving average filter
- Spike detection

Figure: Exponential filter implementation for encoder readouts.
Algorithm for smooth on-fly velocity profile generation

- Trapezoidal shaped motion not sufficient
- High precision point-to-point moves
- Closed-loop moves
- Multidimensional path
- Jerk limited profile
- Motion profiles continuous in 2nd derivative (acceleration)
- On-the-fly generated path predictable at any point of the trajectory
- Possible triggers in sync with movements

Figure: Spline move building blocks
Motion States

Constant Velocity
- Calculate/Receive New Velocity
- Single Spline Segments

Big velocity change > 4*\alpha

Acc-Scurve-Start-Jerk
- Const Acc
 - Single Spline Segments
 - Max velocity of Const Acc

Small velocity change < 4*\alpha

Full Sigmoid Profile

Acc-Scurve-End-Jerk
CR1/CR2 Controller

Target Position
Maximum: Velocity, Jerk, Acceleration

Controller

Motion State Machine

Smooth Motion Profile

Encoder / Filter

Mechanics

Drives

1) Worm Gear
 Gear Box
 Timing Belt
2) Sine Drive

Figure: Motion state machine output.
Long Range Spline Moves

DCM
1 Axis closed-loop
PID Vff
+ Programmed velocity profile

PGM
Continuous mode

Figure: Crystal rotation velocity and cryo axis velocity
Closed Loop End Positioning

- Generate Spline
- Changing gain close to target
- Smooth approach
- In-position band
- No direction inversion
- No vibrations
- Predictable path
- Good results for full stop directly to end-position
- Mechanical errors and non-linearities
- Extend algorithm for fast closed-loop deceleration phase

Figure: Deceleration phase
Motion Program Logic (DCM)

- **Start**
 - Distance to target and FE small, short range
 - Backlash Logic
 - Distance to Target or FE big
 - Linear Motion
 - Distance to target and FE small, short range
 - Mid range \(t/2 \)
 - Short range
 - Onfly algorithm
 - Linear Motion
 - End Positioning
 - Piezo Positioning
Piezo motors for crystal parallelism

Table: Motors and their ranges

<table>
<thead>
<tr>
<th>Axis</th>
<th>Motor</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystal translation</td>
<td>Stepper motor</td>
<td>70mm</td>
</tr>
<tr>
<td></td>
<td>Piezo motor</td>
<td>90 μm</td>
</tr>
<tr>
<td>Crystal Pitch</td>
<td>Piezo motor</td>
<td>90 μm</td>
</tr>
<tr>
<td>Crystal roll</td>
<td>Piezo motor</td>
<td>90 μm</td>
</tr>
</tbody>
</table>

Figure: Ray diagram and degrees of freedom of piezo motor system

Figure: Open-loop system
Closed loop system

Requirements
1. Setpoints in micro radians
2. Pitch and roll positioning in closed loop
3. Stable and fast closed-loop control

$X_1 =$ distance between pitch and height encoders.
$X_2 =$ distance between roll and height encoders.

Procedure
- Open loop system identification
- Estimation of MIMO system-state space model
- Stability analysis
- Pole Zero placement design
- Closed loop tuning of the interconnected system
- Implementation and testing
Results

Figure (a)
A pi signal response of the measured system and estimated system

Figure (b)
The closed-loop performance of the roll piezo motor
Diagnostic: Continuous Feedback

EPICS wf-records monitored by client software

Feedback module processes data

Poll task checks/reads data package

PLC code calculates and fills data package in user buffer
Acknowledgement

Jens Viefhaus
Peter Baumgärtel
Roland Müller
Mihaela Gorgoi
Andreas Gaupp
Gerd Reichard
Winfried Frentrup
Joachim Rahn
Olaf Pawlizki

Götz Pfeiffer
Thomas Birke
Benjamin Franksen
Götz Pfeiffer
Maha Dürr
Sven Wrede
Marco Witt
Ervis Suljoti
References