The Design of Intelligent Integrated Control Software Framework of Facilities for Scientific Experiments

Z. G. Ni1, L Li1, J. Luo1, J. Liu1, X. W. Zhou1, Y. Gao2

1: Institute of Computer Application, China Academy of Engineering Physics, Mianyang City, China
2: Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, US

Challenge

- Hundreds of thousands of irregular control points.
- System is required to work properly for several days.
- The construction period of the project is very long, and the demands are changing over time in many fields.
- The control system needs to adapt quickly to those changes and expanding demands.
Our work

- We have abstracted the common requirements of monitoring, control, data acquisition and storage of the control system.
- We are developing a distributed, hierarchical, object-oriented control software framework called iCOFFEE.
 - Implement device library (software device library, domain algorithm library, control flow library).
 - Provide a friendly GUI for the operators.
Conclusion

• The construction of the iCOFFEE incorporates many of the latest advances in distributed computing and object-oriented software technology. The primary goals of the design are to provide an open, extensible, and reliable architecture that can be used by many entities and provide long-term maintenance and upgrades. The original intention of the design was to reuse the software and quickly build the application software.

• Based on the framework of Tango and Thrift, the framework uses the factory architecture and component technology to reuse the software at a higher level, and build a big data analysis platform based on data collection.