Planning of Interventions With the Atlas Expert System

ICALEPCS 2019

Ignacio Asensi
University of Valencia
Introduction

- ATLAS is a general-purpose particle physics experiment at the LHC
- Its major components are
 - Magnet, Muon, Inner detector, Calorimeters
 - Many others like computing, Control and Safety systems
- Confident knowledge on many systems of the detector is critical for maintenance, upgrade operations control and monitoring
What is ATLAS?

A physicist thinks this is ATLAS

A engineer thinks this is ATLAS

A Safety person thinks this is ATLAS

General public
What is ATLAS for us?

ATLAS is...

- Database
- User Interface
- Questions
- Answers
- Decisions

Tasks!

https://its.cern.ch/jira/projects/ATLASTCES/issues

What happens if EXD1 trips??
What happens if the TRT cooling loop 3 stops?
What happens if fire detection system loses power?
What happens if....

Questions

Number of issues done and pending vs time
Simulating ATLAS behavior

Using graphical interface

- Individual systems can be found by locations, types or groups
- Systems can be switch off and alarms be triggered
- Systems are represented as boxes with up to 3 icons (switch, state, info)
- When there is an interaction, the inference engine determines the consequences and displays the new scenario
<table>
<thead>
<tr>
<th>Electricity</th>
<th>Cryogenics</th>
<th>Gas</th>
<th>Magnet</th>
<th>Racks</th>
<th>Water</th>
<th>Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
<td>Electricity</td>
<td>Gas Summary</td>
<td>Cryogenics SH1</td>
<td>Racks SR1</td>
<td>Water Distribution</td>
<td>Access System</td>
</tr>
<tr>
<td>Electricity 18kV</td>
<td>Cryogenics Distribution</td>
<td>Gas Racks</td>
<td>Cryogenics USA15</td>
<td>Racks SDX1</td>
<td>Water SF1</td>
<td>Elevators</td>
</tr>
<tr>
<td>Diesel Electricity</td>
<td>Cryogenics SH1</td>
<td>Gas CSC</td>
<td>Cryogenics UX15</td>
<td>Racks USA15</td>
<td>Water SPS</td>
<td>Smoke Centrals</td>
</tr>
<tr>
<td>UPS SDX1</td>
<td>Cryogenics USA15</td>
<td>Gas MDT</td>
<td>Magnet Cryogenics</td>
<td>Racks US15</td>
<td>Water SUX1</td>
<td>Flammable Gas Centrals</td>
</tr>
<tr>
<td>UPS SX1</td>
<td>Cryogenics Racks USA15</td>
<td>Gas RPC</td>
<td>Magnet Vacuum</td>
<td>Racks UX15</td>
<td>Water SH1</td>
<td>Sniffer Racks</td>
</tr>
<tr>
<td>UPS USA15</td>
<td>LAR Heater Racks</td>
<td>Gas TGC</td>
<td>Magnet Electricity</td>
<td>Access System</td>
<td>Water SU1</td>
<td>Firemen Boxes</td>
</tr>
<tr>
<td>UPS US15</td>
<td>Cryogenics UX15</td>
<td>Gas TRT</td>
<td></td>
<td></td>
<td>Smoke Centrals</td>
<td>Water USA15</td>
</tr>
<tr>
<td>Racks SR1</td>
<td>Cryogenics ANRS</td>
<td></td>
<td></td>
<td></td>
<td>Flammable Gas Centrals</td>
<td>DSU</td>
</tr>
<tr>
<td>Racks SDX1</td>
<td>Cryogenics Argon</td>
<td></td>
<td></td>
<td></td>
<td>Sniffer Racks</td>
<td>Backup Chiller</td>
</tr>
<tr>
<td>Racks USA15</td>
<td>Cryogenics Argon PLC13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Minimax</td>
</tr>
<tr>
<td>Racks US15</td>
<td>Cryogenics Argon PLC14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Racks UX15</td>
<td>Cryogenics Argon PLC15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DSS Racks</td>
</tr>
<tr>
<td>Lighting</td>
<td>Cryogenics Argon PLC16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CV Room</td>
</tr>
<tr>
<td>Magnet Electricity</td>
<td>Magnet Cryogenics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cooling

- Cooling US15
- Cooling TRT
- Muon Cooling Loops
- DSS Alarms
- Cryogenics Racks USA15
- Detector Cooling
- Inhibit Request
- LAR Heater Racks
- Evaporative Cooling
- Minimax
- Thermosyphon
- IBL Cooling
Sub detector descriptions - CSC

Menu

Advanced

Fold

Simulations
Dashboard
Search

Systems
Electricity

Sub-Detectors
Cooling TRT
IBL
Pixel
SCT
TRT
LAr
Tile
RPC
MDT
CSC
TGC
FTK

Locations
Help
Inhibit Request
Sub detector descriptions - TGC

Menu

Advanced

Unfold

› Simulations
› Dashboard
› Search
› Systems
› Electricity
› Sub-Detectors
 Cooling TRT
 IBL
 Pixel
 SCT
 TRT
 LAr
 Tile
 RPC
 MDT
 CSC
 TGC
 FTK
› Locations
› Help
Inhibit Request
Simulation of power cut

- Quickly understanding of events
- Consequences of a power cut in a main line
- Minimize impact in subsystems
Impact on IBL
Impact on ATLAS
Expert System portability

- **Database**
 - Objects
 - Relationships

- **Server**
 - Logic
 - Database class helpers

- **Web application**
 - Communication with server
 - Diagrams

Model
- Maintenance of simulation state
- Store and retrieve data

Controller
- Respond to user input
- Interpret user request with data from model

View
- User interaction
- Scenario rendering

General
ATLAS specific
The ATLAS Expert System by ATLAS Technical coordination is a diagnostic tool for the maintenance of the experiment.

Description of critical systems like electricity, gas, detectors and others is reaching the desired granularity.

The Expert System has been proven useful evaluating the impact of interventions.

Simulations have been compared with actual intervention outcomes during LS2.

The portability to other detectors is possible.

Future plans include the ability to search the causes of current state in the simulations.
Thank you for your attention