The CMS ECAL Control and Safety Systems Updates during the CERN LHC Long Shutdown 2

D. Di Calafiore¹, A. Tsirou², G. Dissertori¹, P. G. Verdini¹, R. Jiménez Estupiñán¹, S. Zelepoukine¹,³, W. Lustermann¹

On behalf of the CMS Collaboration

1) ETH Zurich – Institute for Particle Physics and Astrophysics
2) CERN
3) INFN Sezione di Pisa, Università di Pisa, Scuola Normale Superiore di Pisa
4) University of Wisconsin-Madison

The CMS ECAL Detector Control System

Safety System
Temperature Readout System

1. Safety System
 Temperature Readout System
 - Motivation: Original system presented several hardware and software issues
 - Replacement of Custom Made (CM) by Commercial-Off-The-Shelf (COTS) hardware
 - 352 NTC sensors B57211V2471J060 read out by 44 SIEMENS 6ES7331-1FK02-0AB0
 - Sensors’ redundancy preserved with distribution among different readout modules
 - Recovery of four sensors – monitoring coverage at 100%
 - Improved reliability, availability and robustness

2. Safety System
 24VDC Distribution with UPS
 - Motivation: Load increase due to the installation of new hardware
 - Fully redundant UPS-based 24VDC/20A distribution
 - Based on the latest generation of SIEMENS hardware
 - LiFePO batteries to be replaced every 15 years
 - Batteries can support the complete system for approx. 60 min
 - Improved availability and reduced maintenance efforts

3. Safety System
 PLC Code
 - Motivation: Standardization across CMS sub-detectors safety systems
 - Based on the CMS Tracker PLC code architecture, adapted for the CMS ECAL specifications
 - CPU and PROFIBUS redundancies properly implemented and validated
 - Redundancy issues are logged and propagated to the detector control system for alerts
 - Improved long-term support and maintenance

Control System
Software

4. Control System
 Software
 - Motivation: Hardware/specifications changes and evolution of software platforms
 - Adapted to support all hardware changes and new functionalities
 - Computing hardware to be replaced by new and more powerful servers
 - Migration to Windows Server 2016 and WinCC OA 3.16
 - Deployment of latest versions of the CMS DCS and JCOP frameworks
 - Certification of source codes compatibility with UTF-8 (ISO-8859-1 encoding no longer supported)
 - Migration from Subversion (SVN) to GitLab
 - Migration to OPC Unified Architecture (UA)
 - New and enhanced user interfaces
 - Improved operation and long-term support

Low Voltage System
Re-distribution of data buses

5. Low Voltage System
 Re-distribution of data buses
 - Motivation: Fix communication issues on buses running at the limit of their specifications
 - Handling of additional latency introduced by CAN-Ethernet adapters
 - Two buses containing 30 nodes each were split in four buses with 15 nodes
 - Optimal set of parameters introduced in the data server configuration
 - General performance improvement by a factor of up to 2
 - Initial tests successful and long-term validation ongoing
 - Improved reliability, availability and performance

Acknowledgements
Swiss National Science Foundation, Switzerland

1) ETH Zurich – Institute for Particle Physics and Astrophysics
2) CERN
3) INFN Sezione di Pisa, Università di Pisa, Scuola Normale Superiore di Pisa
4) University of Wisconsin-Madison