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1. ALICE Upgrade and Muon Forward Tracker
Upgrade program for LHC Run 3 starting from 2021

Muon Forward Tracker (MFT) [1]

A new silicon pixel detector based on Monolithic

Active Pixel Sensors (MAPS) technology [2]

5 double-sided disks providing 5 um
position resolution

» Improvement of directional accuracy with
regards to muon vertices

» Separation of open charm and open
In single muons

» High resolution of di-muon invariant
masses especially in the low-mass region

Online and offline computing systems (0?) [3]
New computing system, online and offline system commonly merged
* 1.1 TB/s in Pb-Pb collisions at 50 kHz with continuous readout
- Employment of the Giga-Bit Transceiver (GBT) technology [4]
* Online reconstruction for data volume reduction
« Common Readout Unit (CRU) on First Level Processor (FLP)

Schematic view of the MFT

A /2 Detector Control System (DCS) in Runs 3 and 4\

Responsible for safe and reliable operation of the experiment
Basic technology
* WInCC Open Architecture (OA) as SCADA
» JCOP framework produced by CERN
GBT-Slow Control Adapter (GBT-SCA) [5]
» CERN developed ASIC for control of the on detector electronics,
integrated in the GBT framework
» Operated in parallel to the data acquisition over the same optical link
Alice Low level FRont-End Device (ALFRED) [6]
New infrastructure for handling of detector controls data over the GBT
* ALF
— Interface between the FRED and fronted electronics via CRU
* FRED
— Provides translation between detector oriented high-level and
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/5. Test Bench

A full scale test bench was built at Hiroshima University, Japan.
Structure

* The simplest DCS chain the same as Fig. 2

Test

» Read the values of the Pt1000s on the RU board via the data chain
Result

* Their values are displayed on the GUI (Fig. 5)

» The state changed when the temperature exceeded the threshold
It was confirmed that the FSM and the data chain work correctly.

. — Raw data are split into physics data and condition data
~
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/4. Finite State Machine (FSM)

A core of the hierarchical control of the MFT (Fig. 3)

Node types

» Control Units: logical nodes, states defined by children’s states

 Device Units: physical nodes attached to device channels reflect the
hardware status

States for the nodes (e.g. Top node)

The detector response to the beam operations

» SUPERSAFE: channels of the PS modules to the detector is OFF and
the sensor chips are OFF

* SAFE: the PS channels is ON but the sensor chips are OFF

« READY: the whole detector is ready for the data taking

Simulation test for the L - MFIDCS
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/6. Multiplexer of Power Supply Unit
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Analogue switch and buffer/blocker
 Limited DAC ports on the GBT-SCA
* One DAC port to obtain 4 analogue voltages for the generation of
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