
ATIP
Accelerator Toolbox Interface for Pytac (ATIP) is the plugin that allows Pytac to use
pyAT as its simulation.

>>> l at t i ce. set _def aul t _dat a_sour ce(pyt ac. SI M)
>>> l at t i ce. get _el ement _val ues(’ BPM’ , ’ x ’)
[0. 0, 0. 0, 0. 0, . . .]
>>> h_cor r = l at t i ce. get _el ement s(’ HSTR’) [0]
>>> h_cor r . set _val ue(’ x_ki ck’ , 0. 1, uni t s=pyt ac. ENG)
>>> l at t i ce. get _el ement _val ues(’ BPM’ , ’ x ’)
[0. 24630504031808942, 0. 12495575893699563,
- 0. 1257213016476168, . . .]

ATIP uses a simple asynchronous
threading model to keep the simulation
up to date. Any changes that would
require a recalculation using pyAT are
placed on a queue. A dedicated
simulation thread loops continuously
checking whether there are any items in
the queue. If so, it empties the queue,
applies the changes and recalculates.
When a request for data is received,
ATIP will check whether an update is
pending and if so will wait until the
recalculation is complete before
returning that data.

W. Rogers, T. J. R. Nicholls, A. A. Wilson, Diamond Light Source
Harwell Science and Innovation Campus, Didcot, Oxon OX11 0DE

pyAT, Pytac and pythonSoftIoc:
A Pure Python Virtual Accelerator

For more information please contact Will Rogers at will.rogers@diamond.ac.uk

Motivation
Testing control system software can be difficult because the hardware may be in use
much of the time or, in some cases, may not yet exist. Virtual Accelerators are used to
simulate a control system so that the software that will run against the control system
can be realistically tested.

Python is a high-level programming language with many advantages for building a
virtual accelerator: it is free and open source, is widely used in science and industry,
has many third-party libraries available and is capable of building large scalable
applications.

To build a virtual accelerator in Python a number of components are required,
including a simulation code and a control system server that can be run from Python.
This poster describes assembling those components into a fully-featured virtual
accelerator.

pyAT
Accelerator Toolbox (AT) is a simulator for synchrotron light sources written in Matlab.
It uses a numerical engine coded in C for efficiency. That design allowed recompiling
the same C code into a Python extension so that the same engine could be used in
Python, now available as pyAT.
Since the underlying code is the same, pyAT gives numerically identical results to AT,
and it provides the simulation for our virtual accelerator.

Pytac
Python Toolkit for Accelerator Controls (Pytac) is a Python library designed to enable
working with different particle accelerator components. Each element in an
accelerator is represented by an object that may give access to a number of physical
parameters. Elements may belong to ‘families’, groupings that are often used in
accelerator physics. Pytac allows requesting live data from the control system or (via
ATIP) the equivalent data from a pyAT simulation.

Unit Conversion
A control system typically works in engineering units, whereas simulation codes use
physics units. Pytac provides a mechanism for converting between these two unit
systems, with extensibility for different conversion methods.

>>> quad. get _val ue(’ b1’ , uni t s=pyt ac. ENG)
103. 18108367919922
>>> quad. get _val ue(’ b1’ , uni t s=pyt ac. PHYS)
- 1. 0192934647760261

Virtual accelerator
The virtual accelerator uses the components described on this page and
pythonSoftIoc (see below) to construct the virtual accelerator.

High-Level Applications
The following high-level applications can be tested using the virtual accelerator:

Slow orbit feedback uses the orbit response matrix and the beam position
measurements to calculate corrections that are applied to corrector magnets.
RF feedback corrects any drifts in the RF frequency that are accumulated while orbit
feedback is running.
Tune feedback uses some of the families of quadrupoles in Diamond’s storage ring
to keep the horizontal and vertical tunes stable.
Vertical emittance feedback uses Diamond’s skew quadrupoles to maintain the
vertical size of the electron beam.
Pyburt a new version of the EPICS Back Up and Restore Tool, under development
and also using pure Python code.

Volo

Identical results obtained and plotted using the Python
(left) and Matlab (right) builds of Accelerator Toolbox

Comparison of speeds of equivalent
simulations of the ESRF EBS lattice

using different codes

A screenshot of an early version of Volo

The different components described on this
poster lend themselves to building other
applications. Visualiser and Optimiser for
Linear Optics (Volo) is now under
development. It uses the pyAT simulator
and the ATIP threading model to provide an
interactive view of accelerator parameters.
The next development is using SciPy
numerical routines to provide an optimiser.

How ATIP integrates into Pytac

pythonSoftIoc
pythonSoftIoc allows creating EPICS servers using just Python code. It

provides the control system server for the virtual accelerator.

How the different components fit
together in the virtual accelerator.

Software
Python version 2.7 and 3.5+ are supported.
All code is open source and hosted on Github at https://github.com/dls-controls.
pyAT, Pytac and ATIP are available from PyPI: https://pypi.org.
Any interest in collaboration would be welcomed: email will.rogers@diamond.ac.uk.

Challenges

Control system complexities
Often the virtual accelerator presents a
simpler view than the real control
system. A number of techniques are
used to mitigate this.
Simulation speed
The simulation can do a full
recalculation in less than one second.
In most cases this is adequate but in
one case an update rate check needed
disabling for a client application to run.
It is also possible to calculate fewer
parameters and update more quickly.

https://github.com/dls-controls
https://pypi.org/
mailto:will.rogers@diamond.ac.uk

	Slide Number 1

