
THE WEB AS THE PRIMARY CONTROL SYSTEM USER INTERFACE*

R. Neswold† , B. Harrison‡ , Fermilab, Batavia, USA

Abstract
Fermilab's Control System uses a proprietary application

framework written decades ago. Considered state-of-the-
art at one time, the control system now lacks many features
we expect from a modern interface and needs to be up-
dated. Our investigation of Web browsers and JavaScript
revealed a powerful, rich, and state-of-the-art development
environment. We discuss JavaScript frameworks, JavaS-
cript language features, and packaging tools. We also dis-
cuss issues we need to resolve before we are confident this
can become our primary application platform.

INTRODUCTION
We set out to reimagine accelerator control applications.

Exploring modern development tools and current best
practices help us move away from existing, aging depend-
encies while improving the users' experience.

Fermilab's parameter page application is broadly consid-
ered to be the workhorse of the control room. The parame-
ter page allows operators to freely request live data from
any device in the control system. Key features include the
ability to manipulate devices, query the control system for
meta-information about a given device, plot the data over
time, and provide textual context for the set of devices. The
parameter page application also allows users to save their
set of queries and notes for easy retrieval and, therefore,
has become a simple way for machine experts to create
basic applications. Many other applications are structured
views of data that allow the user to read and manipulate
data in a predefined, restricted, way.

We found these features in common with modern dash-
board applications. Dashboards offer a series of configura-
ble panels that can be added to a view and saved for later.
Views are for a specific task or related data. Dashboards in
the browser allow for easy shared access to saved views.
Browsers also provide many accessibility features that
would require lots of effort to implement in traditional ap-
plications. We can consider JavaScript applications so
readily because we have an existing client library that al-
lows for streaming accelerator data from the control system
to JavaScript via WebSockets.

Identifying the dashboard's component-like structure led
us to investigate web application frameworks that support
self-contained and reusable code. We aim to provide oper-
ators with a blank canvas and the ability to intuitively add
new panels with standard components. They then save this
view and get a unique endpoint that they can return to in
the future. We hope that this component-based design en-
courages developers to reuse and modify code rather than

reimplement very similar features over many applications.
In our investigation, we looked at framework maturity,
adoption, and documentation. While others like Angular,
VueJS, and Java fulfilled the requirements, ReactJS's ubiq-
uity, quality documentation, and ease of use made it stand
shoulders above.

INVESTIGATING REACT
React[1] is a JavaScript library used to create "compo-

nents" along with an engine that efficiently renders
changes in the DOM. A component is a JavaScript module
that renders HTML elements and manages the state associ-
ated with them. Each component is self-contained; the out-
side state is provided when the component is created, but
from that point on, the component updates its own, internal
state. Since components are insulated from external effects,
they can easily be combined to make more complicated
components. React-based applications are nothing more
than a series of nested components.

The React team provides a command-line tool to help set
up a new React project called create-react-app. This
tool creates a directory tree containing initial, sample Ja-
vaScript source along with the necessary configuration
files to build your application. It also sets up an area used
for creating unit tests for your project. As your application
grows, tests should be added to make sure previously
working features still work. The build environment in-
cludes another powerful feature where, after successfully
building the project, a web server is launched to run your
application. The server listens on the localhost address and
opens a tab in the default browser on your desktop display-
ing your application.

React projects typically use an extension to JavaScript
called JSX[2] which makes the rendering code much easier
to understand. JSX allows you to use HTML-style tags in
your JavaScript code, rather than the explicit function calls
it takes to create the elements. Files using JSX notation
have the file extension .jsx. When building the applica-
tion, files with this extension are processed by converting
any JSX notation into calls to createElement() render-
ing a .js file. The resulting file has the normal .js exten-
sion and can be loaded by the browser.

Aside from the component hierarchy, applications also
require some logic to manage global state, interface to 3rd
party libraries, and even to pass state between components.
This logic can get complicated, and due to JavaScript's dy-
namic typing, simple mistakes aren't necessarily caught un-
til the code path is executed, resulting in run-time errors.
Fortunately, we found that we could use Microsoft's Type-
Script language with our React projects, which eliminated
a whole class of bugs in our code and helped speed up our
development.

* This manuscript has been authored by Fermi Research Alliance, LLC
under Contract No. DE-AC02-07CH11359 with the U.S. Department of
Energy, Office of Science, Office of High Energy Physics.
† neswold@fnal.gov
‡ beau@fnal.gov

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEDPR04

User Interfaces, User Perspective, and User Experience(UX)
WEDPR04

987

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

TypeScript[3] is a free, open-source transpiler created by
Microsoft which adds static type-checking to JavaScript. It
follows most of JavaScript's syntax, except that function
parameters and variables, are annotated with type specifi-
cations. TypeScript also introduces useful data types (like
tuples), which JavaScript doesn't have, allowing you to
write more expressive code.

Before the browser can run the code, the TypeScript
source (.ts) is transpiled to JavaScript where type anno-
tations are removed, and non-standard data types are con-
verted to JavaScript counterparts. Although the end prod-
uct is dynamically-typed JavaScript, the code has gone
through extensive type analysis resulting in much fewer
run-time errors. We were also happy to see that many 3rd-
party libraries include a TypeScript declaration file so that
you benefit from strict type-checking while using their
API. We found that using TypeScript improved our produc-
tivity, even with simple examples, because we spent less
time in the debugger analyzing exceptions caused by typ-
ing errors.

TypeScript can transpile to older versions of JavaScript,
too, so, if you need to use an older browser, it can generate
JavaScript that still implements modern behavior but uses
older JavaScript features to implement them (of course, the
resulting code is larger.) TypeScript also supports JSX syn-
tax, so React source benefits from JSX's notation and Type-
Script's code analysis.

Figure 1 shows an example of a simple React compo-
nent. This component renders as a label, a text input field,

and a text area to display processed output. Lines 4-7 is an
example of TypeScript defining the layout of an anony-
mous JavaScript object. Line 9 shows how to attach type
annotation to a variable. In this case, we’re using a class
name that uses generics to specify what type is used when
passing in the component’s properties. This function re-
turns an HTML element that gets rendered on the web
page. Lines 14-25 use JSX notation to specify the top-level
element and its nested child elements. This notation is
much easier to understand than the JavaScript functions
calls required to create the elements. Note also, in the JSX
syntax, that we inject the value of variables into the ex-
panded output by putting the variable name in curly braces.
Line 11 shows how to allocate state which is used each time
the function is called. The function useState() returns
the current state and a function to call to update the state.
React uses the update function to track when a compo-
nent’s state changes so it can determine which subset of the
page needs re-rendering. In this example, as the text is
added, it is copied to the paragraph element. When the
length of the string reaches maxLength characters, it gets
displayed in red, rather than black.

The default HTML page for a React app is mostly empty.
The body element typically contains a single div element
with the ID of “root.” To get everything started, the JavaS-
cript starting function would, in the example, contain the
following call:

 1 import React, { useState } from 'react'
 2 import './ReactiveInput.css'
 3
 4 interface ReactiveInputProps {
 5 label: string,
 6 maxLength?: number
 7 }
 8
 9 const ReactiveInput: React.FunctionComponent<ReactiveInputProps> =
10 ({ label, maxLength = Infinity }) => {
11 const [currInput, setCurrInput] = useState('');
12
13 return (
14 <div className='reactiveInput'>
15 <label htmlFor='reactiveInput'>{label}</label>
16 <input
17 type='text'
18 name='reactiveInput'
19 value={currInput}
20 onChange={(event) => {setCurrInput(event.target.value)}}
21 />
22 <p className={currInput.length > maxLength ? 'invalid' : ''}>
23 {currInput}
24 </p>
25 </div>
26);
27 }
28
29 export default ReactiveInput;

Figure 1: Simple example of a react component.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEDPR04

WEDPR04
988

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)

ReactDOM.render(
  <ReactiveInput
  label=’Hello ICALEPCS 2019’
  maxLength={10} />,
  document.getElementById('root')
 );

Figure 2 shows the resulting web page, with sample text,
already entered.

Building React Projects
When working with JavaScript, the tool that builds your

project manages dependencies, runs tests, and deploys
your application is npm[4]. npm was developed for NodeJS
as their package manager and has evolved to include tools
useful for client-side development. You use npm to install
global tools like TypeScript (npm install -g type-
script) or the project creation script for React (npm in-
stall -g create-react-app). npm also installs 3rd-
party libraries used by your project, along with their de-
pendencies.

The chain of events that build and prep your application
for deployment begins with “npm run build”. This com-
mand runs a series of tools that are unique to a browser’s
model of loading code. To run your application in the
browser’s JavaScript interpreter, it needs to see all the Ja-
vaScript source used in an application; hence, there’s no
compile/link cycle. Instead, npm runs the project through a
series of tools that try to produce the smallest sized JavaS-
cript possible to shorten the load-time of your application.
It also runs tools that rewrite portions of your code to max-
imize compatibility with your set of targeted browsers.

In our React applications, the first tool used is the Type-
Script transpiler. As mentioned earlier, this step does ex-
tensive code validation based on the added type annotation.
The validated code is emitted as JavaScript and is passed
to the next tool, Babel.

Babel[5] is a transpiler, like TypeScript, but its mission
is to rewrite -- if necessary -- the JavaScript so that it can
run on the set browsers you specify. If your site needs to
run on older browsers, you would add that requirement to
the Babel configuration, and Babel would make sure that,
no matter what advanced features of JavaScript you use,
it’ll run on that browser. Of course, if you target more re-
cent versions of browsers, Babel passes more of your code
through, untouched.

Babel supports plugins, and many are available in case
you need other translations than compatibility. In our React
projects, Babel is used to translate the JSX syntax into Ja-
vaScript.

Once your project’s code has been prepped, the last tool
invoked is WebPack[6]. WebPack’s primary purpose is to
combine all your source, and the source of 3rd party librar-
ies used by your project, into one, large source file. As can
be imagined, this could end up being quite large and, there-
fore, WebPack’s secondary purpose is to make the source
code as small as possible. It does this using several strate-
gies. First, it makes sure that, if several modules import a
library, it only gets included once. Next, it makes a pass

through the source and removes code that isn’t used (i.e.,
dead-code elimination.) These first steps can significantly
reduce the final size of the project, but WebPack performs
one more translation, called “minify.” In the “minification”
step, all extraneous whitespace (and comments) are re-
moved, and identifiers (like variable and function names)
are shortened. Once the build is complete, the project’s
source isn’t human-readable, but it’s easily read and run by
a browser and is much smaller than the original body of
source.

Figure 2: Sample output from react example.

Developer Tools
At the time of this conference, three major browser cores

have emerged: Mozilla's "Gecko" (used in Firefox), Ap-
ple's WebKit (used in Safari), and Google's ChromeKit
(used in Chrome and Microsoft's Edge browser.) Each core
closely follows and implements the latest Web Standards.
Each core also has an advanced JavaScript engine that uses
a just-in-time (JIT) compiler to speed up hot-spots in your
code. Also, most importantly, all these browsers come with
a rich suite of developer tools. Usually tucked away in a
menu, selecting the developer tools splits the current web
page into two panes: one contains the rendered web page
and the other displays the interface of the tools.

The debugger allows setting breakpoints, single-step-
ping through code, examining variables, and viewing the
stack, as you would expect. It is more than a source code
debugger, however. It also allows navigating the DOM tree
shown in the web page; as you move the mouse cursor over
DOM tree elements, regions of the web page are high-
lighted in real-time. Selecting elements in this view dis-
plays their CSS attributes in a side panel. Changes to these
attributes are reflected immediately on the rendered docu-
ment allowing you to try tweaks to the page without going
through the build cycle.

The developer tools also include several profilers. Once
the application has run through the code profiler, the source
code view is annotated to show the hot spots. A "flame
view" is also available to show the call stack and how much
time is taken at each level. The code profiler also includes
timing information for the GPU, which measures the ren-
dering time of the page. There's a memory profiler to ob-
serve heap usage which can detect memory leaks or see if
your code is invoking too many garbage collections. A net-
work profiler shows how long it takes to load each resource
in your application.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEDPR04

User Interfaces, User Perspective, and User Experience(UX)
WEDPR04

989

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Aside from helping one to find and fix software bugs,
these tools help streamline your code and minimize load
times. We were delighted with the breadth of development
covered by these tools.

Examples
Throughout our investigation, we found React easy to

understand and use. React’s component model isolates its
logic from the rest of the application’s so you feel confi-
dent in the results. Through our efforts, we developed a
handful of example applications, each focusing on a per-
ceived need for our department. In doing so, we became
aware of several excellent, 3rd party libraries.

Material Design By recommending a framework, like
React, we get consistency in the programming model.
However, web programming also requires layout design
and style guidelines, and so we need to address styling con-
sistency. Specifically, we don’t want each application to
have a different look and feel.

Google has produced a set of guidelines, based on their
research and experience, called Material Design[7].
Google uses them on the Android platform and web inter-
faces, and they closely describe other mobile platforms’ in-
terfaces. By following these guidelines, our applications
will look attractive and consistent and will feel familiar and
intuitive to our users. The npm repository has several React
libraries that make it easy to follow these guides. We’ve
only started using these libraries, but we feel it’s a quick
way to get our custom components to look professional.

Nivo Charts Plotting data is a staple in control’s soft-
ware, so we created React components that wrapped JavaS-
cript chart libraries. One library, in particular, stood out for
both its polished presentation of data as well as how many
chart types it supports. The library is called Nivo Charts[8],
and it lets you visualize data in many ways. It supports over
20 different types of charts, and each type has a set of var-
iations. Their library can render most charts in two ways:
using the HTML canvas element or generating SVG ele-
ments. Each has pros and cons, so the choice depends on
the features you need and how much data you have to dis-
play. Charts rendered to SVG show additional information
when the mouse cursor hovers over it. Charts using the can-
vas element don’t have this feature. However, the canvas-
based charts can handle lots of data points quickly, whereas
SVG charts should restrict the quantity of data to keep it
responsive.

WebGL Pushing our investigation further, we wondered
how easy would it be to model our data using 3D graphics.
We felt there might be situations where it would be useful
to visualize what’s going on in the machine, and we wanted
to see what it would take to do this. We were pleased to
find ThreeJS[9], a JavaScript library that wraps the WebGL
API into an API that’s easier to use. Initially, we created
3D objects programmatically but building more compli-
cated models seemed daunting. Fortunately, ThreeJS can
import model files in several formats. We used Blender3D
to create a motion control station model and then exported
the data. Our web application was able to read in the model,
render it, and control it.

Progressive Web Apps Our last investigation was to
create a “progressive web app” (PWA). “Progressive Web
Apps provide an installable, app-like experience on desk-
top and mobile that are built and delivered directly via the
web. They're web apps that are fast and reliable”[10].

Progressive Web Apps are attractive because they have
the look and feel of a native application that runs on any
platform, and we only wrote one application. The essential
requirement for a progressive web app is to include a man-
ifest file that tells the browser how to display the applica-
tion and where to find the icon set. Google’s PWA checklist
provides details on what features are to be implemented to
be considered a PWA. Chrome also has a built-in auditing
tool, Lighthouse, to evaluate your adherence to the PWA
standards.

The major hurdle for most web applications not feeling
native is the fact that they don’t display and have limited
interactions when you are offline. PWAs cache useful re-
sources allowing users to interact with the application even
when they offline. We plan to conform to this PWA stand-
ard and imagine it could be useful to allow users to change
configurations or refer to notes when offline.

Remaining Issues
Although our investigation showed great promise, there

are still several details we need to resolve before commit-
ting to web applications. One important detail relates to de-
ployment. How do we organize the apps on the webserver?
How do new applications get added to this namespace? Is
there a main page with links to each application? Do we
create a categorization system to find an app easier?

Another concern is about version management. npm al-
lows a project to track the latest versions of the libraries it
uses. In the short time that we’ve been developing, we’ve
seen quite a few patch-level updates. It may make sense to
maintain the framework (React, in our case) as a separate
resource to download and not require applications to in-
clude it in their web bundle. This would allow us to keep
the framework up-to-date, and applications wouldn’t have
to be rebuilt each time a critical update is released.

CONCLUSION
Modern browsers provide a powerful and compelling en-

vironment for hosting acceleration applications. We are
convinced that using web apps is the direction our depart-
ment should take. There are comprehensive development
tools already in browsers to handle all aspects of web de-
velopment. Frameworks provide a professional, intuitive
experience for users, and they hide browser differences
from programmers to the point that they also work on mo-
bile devices. Some frameworks also seamlessly support
progressive web apps, so mobile users feel they’re running
native apps. Tools, like TypeScript and JSX, move many
run-time issues to compile-time, making it easier to pro-
duce correct code. Most importantly, all these technologies
are backed by huge companies (Google, Apple, Microsoft,
Facebook) that have a stake in the success of the web.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEDPR04

WEDPR04
990

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)

REFERENCES
[1] React, a JavaScript library for building user interfaces,

https://reactjs.org/

[2] SX. XML-like syntax extension to ECMAScript,
https://facebook.github.io/jsx/

[3] TypeScript, JavaScript that scales,
https://www.typescriptlang.org/

[4] npm - build amazing things, https://www.npmjs.com/

[5] Babel, The compiler for next generation JavaScript,
https://babeljs.io/

[6] Webpack, https://webpack.js.org/

[7] Design - Material Design,
https://material.io/design/

[8] Home - nivo, https://nivo.rocks/

[9] three.js - JavaScript 3D library,
https://threejs.org/

[10] Progressive Web App Checklist, Google Developers,
https://developers.google.com/web/progres-
sive-web-apps/checklist

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEDPR04

User Interfaces, User Perspective, and User Experience(UX)
WEDPR04

991

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

