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Abstract
The Relativistic Heavy Ion Collider (RHIC) at

Brookhaven National Laboratory will undergo a beam
energy scan over the next several years. To execute this
scan, the transfer line between the Alternating Gradient
Synchrotron (AGS) and RHIC or the so-called the ATR
line, must be re-tuned for each energy. Control of the
ATR line has four primary constraints: match the beam
trajectory into RHIC, match the transverse focusing, match
the dispersion, and minimize losses. Some of these can
be handled independently, for example orbit matching.
However, offsets in the beam can affect the transverse beam
optics, thereby coupling the dynamics. Furthermore, the
introduction of vertical optics increases the possibilities
for coupling between transverse planes, and the desire
to make the line spin transparent further complicates
matters. During this talk, we will explore three promising
avenues for controlling the ATR line: model based control,
on-line optimization methods, and hybrid model based and
optimization methods. We will provide an overview of each
method, discuss the tradeoffs between these methods, and
summarize our conclusions.

INTRODUCTION
The Relativistic Heavy Ion Collider (RHIC) at

Brookhaven National Laboratory will undergo a beam
energy scan [1] over the next several years. To execute this
scan, the transfer line between the Alternating Gradient
Synchrotron (AGS) and RHIC or the so-called the ATR
line [2, 3], must be retuned for each energy. This transfer
line controls the orbit matching, optics matching, and
dispersion matching, of the beam into RHIC. The optics
are further complicated by a 1.7 m vertical drop in order
to get the beam from the AGS to RHIC. In order to ensure
optimum performance of RHIC during the energy scan
the magnets and correctors will need to be properly set on
demand. A high-level diagram of the transfer line is shown
in Figure 1.
The first part of the ATR (referred to as the U-line) line

starts with the fast extraction from the AGS and stops be-
fore the vertical drop from the AGS to RHIC. The U-line
consists of two bends. The first bend is 4.25◦ consisting
of two A-type dipole magnets. The second bend is an 8◦
bend consisting of four C-type combined function magnets
(placed in a FDDF arrangement), and thirteen quadrupoles.

∗ This material is based upon work supported by the U.S. Department of
Energy, Office of Science, Office of Nuclear Physics under Award Number
DE-SC0019682.
† jedelen@radiasot.net

Figure 1: High level schematic of the RHIC transfer line [4].

The primary purpose of the U-line is to: 1) Match the Twiss
parameters at the AGS extraction point and provide achro-
matic transport of the beam to the exit of the 8◦ bend, 2)
Create a beam waist with low beta function values at the
location of a thin gold foil which is placed just upstream of
the quadrupole Q6 of the U-line, 3) Match the Twiss param-
eters of the line to the ones at the origin of the W-line, and
4) Keep the beam size small to minimize losses.

The second part of the ATR line (referred to as the W-
line) introduces the vertical drop for injection into RHIC
and the matching sections for the injection lines. It contains
eight C-type combined function magnets that each make a
of 2.5◦ bend, followed by six quadrupoles. The eight com-
bined function magnets form a 20◦ achromatic horizontal
bend placed in a (F-D) configuration. The W-Line is also
responsible for lowering the beam elevation by 1.7 m. This is
accomplished by two vertical dipoles referred to as pitching
magnets. The first bends the beam down, and is located be-
tween the first and second combined function dipoles of the
W-line. The second, which restores the beam to the horizon-
tal level (bend-up), is located between the second and third
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Figure 2: Left axis: Beam envelope functions as a function of position along the ATR line for two different energies. Right
axis: beam losses along the ATR line for the different energies.

quadrupoles of the W-line. The beam section between the
two pitching magnets is designed to be non-dispersive in the
vertical direction, introducing linear beam-coupling which
is not significant as far as the first-order beam transport op-
tics are concerned. However, this simultaneous vertical and
horizontal bend of the beam turns out to be a concern when
polarized protons are to be transported. Along the line there
are also a number of BPMs and correctors that are required
to match the orbit of the beam into RHIC. Figure 2 shows the
beam envelope for two different beam energies through the
ATR line with the loses plotted on the right axis. Here we
can see that even for small energy deviations the losses can
be significant, highlighting the need for automated tuning
when transitioning between operating conditions.

In this paper we will study the use of optimization and
machine learning for rapid reconfiguration of the ATR line.

A PYTHON MIDDLE-LAYER FOR MAD-X
To facilitate the development of automated tuning pro-

grams we have constructed a Python based middle layer that
can interact with MAD-X simulations as well as dynami-
cally modify the model based on external input from the
users. This allows one to not only take advantage of the
suite of tools available in MAD-X but also the tools avail-
able in Python. For example Python optimization packages,
machine learning tools, and advanced visualization tools.
Figure 3 shows a block diagram of our middle layer and the
different avenues for interfacing with MAD-X.

OVERVIEW OF CONTROL METHODS
Here we provide an overview of the control methods used

for this study. We are considering model based, model inde-
pendent, and hybrid methods to tune the transfer line. Model
independent methods have an advantage over model depen-
dent methods as they do not require accurate modeling of
the machine and can be applied independent of machine sate.
For example, machine drift will ultimately lead to new oper-
ating conditions that require reconfiguration of the machine.

Figure 3: Schematic of the MAD-X middle layer used for
optimization simulations and machine learning.

However, model independent methods can accommodate
this drift without re-training. Some common methods for
model independent techniques include online optimization.
Classical PID is also a form of model independent control.

Model dependent methods have an advantage over model
independent methods due to their ability quickly reconfigure
the machine as they do not rely on a feedback mechanism.
These feed-forward methods however are subject to steady
state offsets due to machine drift or incomplete models of the
machine. Furthermore these models may require updating
over time to account for drift. Some examples of model
dependent methods are model predictive control, which is
useful for systems with long time delays and time dynamics,
linear or nonlinear model based tuning, or online model
based tuning of a machine. In the latter case the models can
be either learned from machine data, accurate simulations
of the machine, or hybrid techniques using artificial neural
networks where the model is trained on both simulation data
and measured data.
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Figure 4: Beam trajectory before and after application of Nelder-Mead optimization for tuning the trajectory through the
beam-line.
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Figure 5: Comparison of the final trajectory using Nelder-Mead optimization and Differential Evolution.

There are also hybrid methods where you use a model to
get close to a desired operating point and then apply opti-
mization to fine tune the settings and optimize the machine
state. This is akin to using a feed-forward term in a PID
controller. For tuning the ATR at different energies, hybrid
methods are the optimal solution due to the difficulties in
accurately modeling such a complicated transfer line.
For a broader overview of these methods and how they

can be applied to accelerators see [5, 6]

OPTIMIZATION BASED
TRAJECTORY CONTROL

Our initial studies are focused on trajectory control using
optimization methods. We have examined the use of Nelder-
Mead optimization and Differential Evolution to tune the
beam trajectory using the correctors. This study lays the
groundwork for the developing the necessary tools for au-
tomatic reconfiguration of the ATR line. For each of the
optimization runs the beam-line is initialized with zero exci-
tation in the correctors. We tuned 23 corrector magnets to
minimize the sum of the squares of the beam position along
the beam-line. The cost function was defined by Equation 1.

F(c) =
∑
i

x(c)20,i +
∑
i

y(c)20,i (1)

Here c are the corrector settings x0,i and y0,i are the beam
offsets in the two transverse planes at the ith BPM reading.
Figure 4 shows the beam trajectory as a function of position
along the ATR line with an initial offset in the x and y plane
of 1 and -1 mm respectively and the result of the Nelder-
Mead optimization.
The approach is able to correct an initial trajectory mis-

match, producing a beam at the exit of the ATR with no net
offset nor centroid divergence. In general the Nelder-Mead
optimizer converged in approximately 2500 - 2800 iterations.
We also explored the use of Differential Evolution to tune the
beam-line. This has the advantage of being a more global
optimization technique and may be better suited for tuning
the beam-line for different energies. Figure 5 shows the final
trajectory using the settings from the Differential Evolution
optimizer and the Nelder-Mead optimizer.
When comparing the beam trajectory resulting from the

Nelder-Mead optimization and the Differential Evolution
optimization the curves are quire similar. However, the Dif-
ferential Evolution algorithm required a factor of 5 more
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iterations to converge. This could be related to hyper pa-
rameter tuning of the evolutionary algorithm or simply be a
result of the global nature of the optimizer. In general the op-
timizer should be chosen based on the needs of the problem.
Our framework provides a tool for seamlessly interfacing
MADX to state-of-the-art Python optimization tools that can
also integrate non-ideal machine characteristics.

MODEL BASED TRAJECTORY CONTROL
We also explored the use of model based tuning of the

trajectory through the ATR line. Some form of model tuning
will be necessary to move the machine in large parameter
spaces before using optimization for fine tuning. Artificial
neural networks are a compelling tool for this application due
to their ability to capture complex relationships in large non-
linear parameter spaces. While trajectory control is not in
principle a nonlinear problem, the tools developed for trajec-
tory control will be applied to more complicated nonlinear
problems. Additionally, using a nonlinear model allows for
us to account for magnet excitation curves and for other non-
linearities in the machine that are not captured by traditional
methods.
We trained our neural network on 5000 MADX simula-

tions with random initial beam offsets and random corrector
settings. The inputs to the network are the beam positions
along the beam-line and the outputs are the corrector set-
tings. In effect we are using a neural network to learn an
inverse model of the MADX simulations. To apply this
method the user would specify a desired trajectory and the
network would return a set of corrector settings to achieve
this trajectory. Figure 6 and 7 show the inputs and outputs
to the neural network respectively. The training data and
validation data are shown in blue and orange respectively.

In general the network does a pretty good job of predicting
the corrector settings from a given beam trajectory across
the dataset. However, there are three parameters that do not
perform well and furthermore the relationship between the
second corrector and the beam trajectory is not captured at
all by the neural network. This indicates that more work
is needed to fine tune our model. Figure 8 shows the loss
function as a function of epoch on both the training and
validation set.

The training and validation data were split using an 80/20
ratio and the mini-batch size was 100 samples. The network
architecture contained 5 fully connected layers with three
hidden layers containing 40, 40, and 50, nodes respectively.
Gaussian noise layers were added between each hidden layer.
A mean squared error loss function was used for training.
Training was terminated after 5000 epochs. Figure 9 shows
the predicted outputs as a function of the real outputs for the
validation set.

On a global scale the network is learning the relationship
between BPMs and correctors and we are not seeing any
overfitting. Next we use the neural network to compute the
corrector settings for a desired trajectory. For this problem
we used an offset of 0.5mm in both planes and requested that

the beam offset be zero along the remainder of the beam-
line. The neural network provided corrector settings that we
gave to the MADX simulation to compute the real trajectory
given these proposed corrector settings. Figure 10 shows
the uncorrected and the corrected trajectory using the neural
network.
While the neural network does does a very good job of

tuning the trajectory it is not as good as the result from
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Figure 6: Histogram of the inputs to the neural network used
to train the inverse model. The training set is in blue and the
validation set is in orange.
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Figure 7: Histogram of the outputs from the neural network
used to train the inverse model. The training set is in blue
and the validation set is in orange.
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Figure 8: Loss function during training on both the training
and validation set.
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Figure 9: Predicted corrector settings as a function of the
real corrector settings on for the validation set.

optimization. This can be due to a variety of factors, either
the model is not accurately capturing the input and output
relationships or the inputs and outputs to the model do not
accurately capture the results from the MADX simulation.
To improve the trajectory we can apply hybrid techniques
where the neural network provides a starting point for the
optimizer.

HYBRID TECHNIQUES
The developed interface enables the use of a hybrid ap-

proach, which combines both a neural network model and
subsequent optimization steps. Figure 11 shows the initial

and final trajectory after we use the neural network to guess
the starting position and then use Nelder-Mead to optimize
the trajectory.
Here the final trajectory is optimized quite well as ex-

pected given results shown on optimization alone. Using
the neural network suggested initial settings reduced the
number of iterations required by the optimizer by almost
half. If the neural network model is improved perhaps using
reinforcement learning directly on the MADX simulations,
this payoff is expected to improve.

CONCLUSIONS
We have demonstrated the use of new tools that make it

easier to interface MADX simulations and custom properties
form the machine with modern Python optimization pack-
ages and machine learning packages. We have shown that
optimization is quite effective at trajectory control for the
ATR line and set the foundation for studies at different ener-
gies and for matching transverse optics. We have also shown
that machine learning can be effective for providing initial
settings to local optimizers for trajectory control. Our next
efforts will extend this work to control at different energies
and control over the transverse beam optics.
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Figure 10: Trajectory of beam using corrector settings computed from the neural network.
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Figure 11: Trajectory of beam using corrector settings computed from the neural network and then optimized using
Nelder-Mead.
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