
IMPROVING ALARM HANDLING FOR THE TI OPERATORS BY 
INTEGRATING DIFFERENT SOURCES IN ONE ALARM MANAGEMENT 

AND INFORMATION SYSTEM

M. Bräger∗, M. Bouzas Reguera, U. Epting, E. Mandilara, E. Matli, I. Prieto Barreiro, M. P. Rafalski,
CERN, Geneva, Switzerland

Abstract

CERN uses a central alarm system to monitor its complex
technical infrastructure. The Technical Infrastructure (TI)
operators must handle a large number of alarms coming
from several thousand equipments spread around CERN. In
order to focus on the most important events and improve the
time required to solve the problem, it is necessary to provide
extensive helpful information such as alarm states of linked
systems, a geographical overview on a detailed map and
clear instructions to the operators. In addition, it is useful to
temporarily inhibit alarms coming from equipment during
planned maintenance or interventions. The tool presents
all necessary information in one place and adds simple and
intuitive functionality to ease the operation with an enhanced
interface.

INTRODUCTION

Alarm systems are an essential component in all environ-
ments where technical equipment is supervised by control
systems. At CERN, different alarm system solutions have
been designed over time and were mostly dedicated to cover
precise expert systems. With the grouping of several control
rooms in the CERN Control Center (CCC) and the increasing
infrastructure for LHC operation, more equipment needed to
be supervised by the Technical Infrastructure (TI) operators.
The existing tools and their technology were developed in
the last millennium and it was difficult to maintain these
with young developers and modern tools.

Today’s alarm system integrates state of the art technolo-
gies and provides the operators with all functionality for
efficient alarm handling. Each alarm has information about
precise location, fault cause and consequences and the ac-
tions to be done. The information is concentrated in a tool
that easily allows to identify alarm avalanches and provides
detailed information for single alarms. The official CERN
map is used to give a geographical overview with animated
live alarm information. Extensive filtering possibilities have
been introduced, which makes the tool usable not only for
the TI operators, but also for the equipment specialists and
other services like the CERN fire brigade.

The paper provides an overview of the chosen architecture
and design decisions for ALIS to deliver an improved alarm
handling experience to the end-users.

∗ Matthias.Braeger@cern.ch

MOTIVATION AND FUNCTIONALITY
Today’s core requirements for a sophisticated alarming

tool have not changed much since the early 90’s [1]. Only
data variety and velocity have tremendously increased. In
first place stakeholders want a service that is agnostic to
all kind of errors and helps to quickly get an overview in
critical situations. Due to the regular feedback of the TI
operators CERN’s in-house alarm systems became over the
years more and more sophisticated and today we are techni-
cally able to provide a state-of-the-art ALarm Information
System (ALIS) that integrates many long-requested features
and consolidates the current diversity of tools. To fulfill
modern user needs ALIS must be accessible from all kind of
devices including mobile devices. This naturally lead to the
choice of creating a web application instead of a traditional
industrial SCADA desktop program.

The application comes with an intuitive search interface to
browse through more than 170’000 TI alarms. The biggest
alarm sources are electrical devices, security related equip-
ments such as access doors or smoke- and fire detectors, and
pre-calculated alarms from other SCADA devices. As speed
was one of the main requirements to the new system, search
results are non-blocking and provided in between 300ms
(search for all active alarms) to maximum few seconds. The
filtered alarms can then be displayed either as a list or on
an interactive map including live updates. Furthermore, the
user can consult all alarm details from the so-called Single
Alarm Page that is opened when selecting a particular alarm.

To prevent unauthorised access to the sensible content
the tool makes use of the CERN OAuth2 Single-Sign-On
service.

ARCHITECTURAL OVERVIEW
The ALIS system is based on an existing open-source

infrastructure called CERN Control and Monitoring Plat-
form (C2MON) [2] [3] [4] (see also Fig. 1). C2MON is
used at CERN as back-end for the Technical Infrastructure
Monitoring (TIM) [5] service which is acquiring and storing
sensor data for a multitude of SCADA applications and user
groups. TIM also provides live updates for the previously
mentioned 170’000 TI alarms, which are evaluated out of
230’000 input tags coming from various hardware and soft-
ware sources. The service has a separate web-based and
domain specific workflow-driven data entry system called
MoDESTI [6]. It allows to enter and review all relevant data
for a proper alarm treatment. MoDESTI takes care of vali-
dating the entered information before storing into the TIM

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA118

MOPHA118
502

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)



Figure 1: Architectural overview.

reference database and handling the online re-configuration
of the TIM-C2MON server.

C2MON has the concept of attaching metadata informa-
tion to tags and alarms, which is used in the TIM context to
configure alarms together with the core information. Meta-
data are kept in-memory in C2MON, which has next to speed
the advantage that ALIS can still run in a degraded mode
and provide basic information for incoming alarms to the
operators.

Alarms belong to at least one context related category,
for instance to the category Electrical Alarms. This allows
users to create individual channel configurations by selecting
categories of their interest. Together, with all other metadata
entered via MoDESTI the user profits from powerful filtering
combinations in ALIS which can be extremely helpful when
trying to understand complex alarm scenarios.

BACKEND
The server back-end of ALIS is written in Java and Spring

Boot [7]. Spring Boot makes it easy to create stand-alone,
production-grade Spring based Applications with an embed-
ded Apache Tomcat [8] server for running the web front-end.

During the startup phase the back-end is initialising local
caches for the most re-used data, that is:

• active alarms,
• geo-coordinates of the CERN buildings,
• geo-coordinates for equipment that have been inte-

grated into the CERN ArcGIS [9] map.
 This is providing the high responsiveness of the 
application and avoids to constantly request data from the 
TIM-C2MON instance or the reference database.

The list of all active alarms is retrieved with the C2MON 
client API and then continuously synchronised from a live 
update listener thread. This thread is also responsible of 
propagating the alarm value updates to the subscribed clients

via web-socket, which is realized with the Atmosphere frame-
work [10].

Query Optimisation Approach
The main use case of ALIS is searching and filtering for

alarms, in particular for active ones. Therefore, special care
was put on optimizing the query speed for this case.

Alarm Search

only active 

alarms?

Get from DB all 

alarm IDs matching 

search criteria

Advanced

search?
Alarm 

reference

DB

User

Return alarm details 

from "active alarm"

In-Memory cache

End

Get alarm details 

from database

Synchronise alarm 

state with active alarm 

cache and return 

result

yes

yes

no

no

Figure 2: Workflow for optimising speed of search results.

The workflow in Fig. 2 aims to illustrate the concept
used for the query optimiser logic. When receiving a query
via HTTP GET request the back-end checks first of all, if
the caller is only interested in active alarms. If so, it can

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA118

User Interfaces, User Perspective, and User Experience(UX)
MOPHA118

503

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



leverage from the local in-memory cache which is keeping
an up-to-date list of all active alarms. Depending on the
other filter criteria, it might even be possible to extract the
result set without database query. This is for instance the
case when filtering active alarms by priority or name. More
complex search queries are realised against the database by
passing directly the RSQL [11] search string, which used
to encode the search criteria on the front-end, to the Spring
Data JPA [12] layer. This flexible and powerful approach
avoids writing a lot of additional search logic and brings
good performance results.

Before returning the result set to the requester it is nec-
essary to synchronise the current alarm state with the local
cache as the reference database is not providing this infor-
mation due to the fast update rate.

FRONT-END
Developing the user interface as a web application allows

us to use a single application to target several clients, from
desktop to mobile devices. It is developed using Vue.js [13]
front-end framework and makes use of Vue’s centralised
state management (Vuex [14]). The Single Page Application
(SPA) is composed of the four following components:

• Search Interface
• Interactive Map
• Alarm List
• Single Alarm Page

 Figure 3 illustrates the font-end workflow implemented 
to display live alarms from a search request. The user starts 
by entering some search parameters in the search form that 
are sent to the ALIS server as two separate requests. The 
first is a GET request to the REST API that returns an 
array con-taining all the requested alarms. In parallel a 
second request is sent to the WebSocket service to start a 
subscription to status changes for the same list of alarms. 
The WebSocket client is implemented with the Atmosphere 
framework [10] and is responsible for providing live 
updates. Any change in status triggers an update that is 
sent to the client. Both re-quests store their results in the 
central store. Vue/Vuex takes care of automatically 
notifying the active component so that the data driven user 
interface immediately updates to reflect the changes in the 
data source. Separating the status man-agement from the 
display layer allows for a more reactive user interface 
since alarms don’t need to be fetched again from the 
server when switching between different display modes. 
The default interface displays the alarms in a list, sorted 
by time, and colour coded depending on their priority level. 
Thanks to the integration with CERN’s GIS portal [15] 
alarms that contain geographical location information can 
be displayed on a map. A third page is provided to display 
detailed information of a single alarm and requires a new 
call to the server to fetch the information not distributed via 
WebSocket. Those additional data are merged into the alarm 
object in the store so that subsequent access to the detailed 
page don’t require more calls to the server.

User Search

Subscribe to 

WebSocket

GET Alarms

REST API

Update Store

Notify Active

Component

Figure 3: Front-end Workflow.

Search parameters are encoded into an RSQL [11] string
before sending them to the server. RSQL is particularly
suited for communicating with REST APIs and allows us to
provide the user with an easy way to save and share compli-
cated search queries in the form of URLs.

OUTLOOK

The current implementation of ALIS is based on existing
data sources and data structures. The data on the different
information displays is generated and maintained by tools
outside the ALIS framework, which makes it difficult to
provide timely updates for changes in the alarm descriptions,
their causes/consquences or actions to be done. This data is
today entered via the MoDESTI procedure or by the current
TI alarm console (Phoenix), which is realised as Java desktop
application and needs to be maintained separately.

Currently, operators are still using a separate desktop ap-
plication as main alarm console (Phoenix), which is linked to
ALIS for providing more information. As the ALIS function-
ality is overlapping and extending the Phoenix functionality,
it is envisaged to integrate the missing parts directly in its
framework.

The ALIS architecture based on web technology allows
to integrate information from different data sources quite
easily. Modules that connect to external systems like the
asset management system can show dependencies and the
state of neighbouring installations. Direct access to existing
online analysis tools for equipment will be integrated to com-
plete the live information for the operators and equipment
specialists in order to ease troubleshooting and repair.

In the future, the presented system could be extended for
a generic SCADA web use case following the same archi-
tectural principle. By distributing live data via WebSocket,
SVG images can be animated by making use of modern
JavaScript libraries such as Snap.svg [16].

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA118

MOPHA118
504

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)



CONCLUSION
Using the current implementation of the ALIS system was

accepted from the beginning by the users. Improvements and
missing features were added timely by the development team.
Tests showed a very good robustness and fast availability of
live data. This confirms the chosen architecture and encour-
ages to add more modules and functionality to provide this
service to an extended number of users. The availability of
ALIS on all web-capable devices enlarges its usage to teams
in the field and provides live status information for nearby
equipment. By using modern technologies, it should also be
easier to find qualified personnel for maintenance and future
extensions.

REFERENCES
[1] M. W. Tyrell, The LEP Alarm System, in Proc. ICALEPCS’91,

Tsukuba, Japan, Nov. 1991, pp. 254-259.

[2] M. Brightwell, M. Bräger, A. Lang, and A. Suwalska, “A Cus-
tomizable Platform for High-availability Monitoring, Control
and Data Distribution at CERN”, in Proc. ICALEPCS’11,
Grenoble, France, Oct. 2011, paper MOPMS037, pp.
418–421.

[3] M. Bräger, M. Brightwell, E. Koufakis, R. Martini, and
A. Suwalska, “High-Availability Monitoring and Big Data:
Using Java Clustering and Caching Technologies to Meet
Complex Monitoring Scenarios”, in Proc. ICALEPCS’13,
San Francisco, CA, USA, Oct. 2013, paper MOPPC140, pp.
439–442.

[4] C2MON project
https://github.com/c2mon/c2mon

[5] A. Suwalska, M. Brightwell, M. Bräger, E. Koufakis, R.
Martini, and P. Sollander, “Integration, Processing, Analysis
Methodologies and Tools for Ensuring High Data Quality
and Rapid Data Access in the TIM* Monitoring System”, in
Proc. ICALEPCS’13, San Francisco, CA, USA, Oct. 2013,
paper TUPPC029, pp. 615–618.

[6] R. Martini, M. Bräger, J. L. Salmon, and A.
Suwalska, “Tools and Procedures for High Qual-
ity Technical Infrastructure Monitoring Reference
Data at CERN”, in Proc. ICALEPCS’15, Mel-
bourne, Australia, Oct. 2015, pp. 1036–1039.
doi:10.18429/JACoW-ICALEPCS2015-WEPGF141

[7] Spring Boot
https://spring.io/projects/spring-boot

[8] Apache Tomcat
http://tomcat.apache.org

[9] ArcGIS
https://www.arcgis.com

[10] Atmosphere framework
https://github.com/Atmosphere/atmosphere

[11] RSQL parser for Java
https://github.com/jirutka/rsql-parser

[12] Spring Data JPA
https://spring.io/projects/spring-data-jpa

[13] Vue.js framework
https://vuejs.org

[14] Vuex state management pattern + library
https://vuex.vuejs.org

[15] CERN GIS portal
https://gis.cern.ch

[16] Snap.svg JavaScript library
http://snapsvg.io

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA118

User Interfaces, User Perspective, and User Experience(UX)
MOPHA118

505

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.


