
EASING THE CONTROL SYSTEM APPLICATION DEVELOPMENT FOR
CMS DETECTOR CONTROL SYSTEM WITH AUTOMATIC

PRODUCTION ENVIRONMENT REPRODUCTION
I. Papakrivopoulos1,2, G. Bakas1, U. Behrens3, J. Branson4, P. Brummer2,5, S. Cittolin4,

D. Da Silva Gomes2,6, G. L. Darlea7, C. Deldicque2, M. Dobson2, N. Doualot2,6, J.R. Fulcher2,
D. Gigi2, M.S. Gladki2, F. Glege2, G. Gomez-Ceballos7, J. Hegeman2, W. Li3, A. Mecionis6,8,

F. Meijers2, E. Meschi2, R.K. Mommsen6, K. Mor2, S. Morovic4, V. O’Dell6, L. Orsini2, C. Paus7,
A. Petrucci4, M. Pieri4, D. Rabady2, K. Raychino2, A. Racz2, A. Rodriguez Garcia2, H. Sakulin2,

C. Schwick2, D. Simelevicius2,8, P. Soursos2, A. Stahl3, M. Stankevicius6,8, U. Suthakar2,
G. Tsipolitis1, C. Vazquez Velez2, A. Zahid2, P. Zejdl2,6

1National Technical University of Athens, Athens, Greece
2CERN, Geneva, Switzerland

3Rice University, Houston, USA
4University of California San Diego, San Diego, USA

5Karlsruhe Institute of Technology, Karlsruhe, Germany
6Fermi National Accelerator Laboratory, Batavia, USA

7Massachusetts Institute of Technology, Cambridge, USA
8Vilnius University, Vilnius, Lithuania

Abstract
The Detector Control System (DCS) [1], [2] is one of the

main pieces involved in the operation of the Compact
Muon Solenoid (CMS) experiment at the LHC. The system
is built using WinCC Open Architecture (WinCC OA) and
the Joint Controls Project (JCOP) framework [3] which
was developed on top of WinCC at CERN. Following the
JCOP paradigm, CMS has developed its own framework
which is structured as a collection of more than 200
individual installable components each providing a
different feature. Every one of the systems that CMS DCS
consists of, is created by targeting and installing a different
set of these components. By automating this process, we
are able to quickly and efficiently recreate systems both in
production, but also, to create development environments
identical to the production ones. This latter one results in
smoother development and integration processes, as the
new/reworked components are developed and tested in
production-like environments. Moreover, it allows the
central DCS support team to easily reproduce systems that
the users/developers report as being problematic, reducing
the response time for bug fixing and improving the support
quality.

INTRODUCTION
Control and real-time monitoring are essential for the

successful operation, wellbeing assurance and efficient
data taking of the CMS detector. This is where the DCS
comes in play. Similar systems are used in all the LHC
experiments but the design, structure and implementation
differ between them. In CMS the DCS is implemented as a
big distributed system [4] where each node, which is called
a system or a project, plays a distinct role either providing

general infrastructure or having a dedicated role interfacing
and interacting with a single subsystem of the experiment.

The DCS community in CMS consists of a central team
that is responsible for the control system that handles all
the common and generic infrastructure of the experiment
and a set of sub-detector teams, each of them being
responsible for one or more systems that handle the
specific needs of every individual subsystem of the
experiment. Apart from being in charge of the general
infrastructure, the central team provides support to the rest
of the experiment in control system related topics as well
as tools that can be reused by the other teams or implement
common experiment-wide functionality. Finally it provides
administration and operation of all the control system
related server infrastructure of the experiment in terms of
OS and generic software like WinCC, OPC servers etc.

The experiment’s control system is designed in a way of
small reusable software entities that are called components.
As mentioned above, each system and as an extension its
role, is defined by the set of components that are installed
into it. All systems start from a minimal initial point
differing only by a little and diverge from one another with
the installation of the components taking their final state
and altogether forming the control system of the
experiment. Out of the 200 individual components around
half are provided by the central team while the rest are
system specific and are developed by the sub-detector
teams. Most of the central components, offer generic
functionality that can be used and even extended while
others implement a specific feature, like the
communication with a certain type of device. This modular
architecture allows for better maintenance of the system,
but at the same time makes it highly dependent on the
ability to constantly be able to install components.
Furthermore, it renders CMS independent of the specific

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA111

MOPHA111
476

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System Upgrades

state of a project at a certain point. This way, the system as
a whole or any of its parts can be re-created from scratch
whenever needed e.g. in case of hardware failure, offering
high availability.

The sub-detector systems are created and maintained by
the central team but they have installed software that is
developed by the sub-detector teams. It is important that
the software delivered by the various teams is tested and its
installation is uneventful. Moreover in case of updates and
improvements in the control system software, the
corresponding components are reinstalled in order for the
new feature to become part of the system. One of the steps
in the software development lifecycle is the creation of
projects and the installation of newly developed features or
components to these projects.

From all the above it is evident that project installation
and recreation is a key tool on the design of the DCS in
CMS. It is of the outmost importance that the system can
be re-installed from scratch at any given point. This means
that for every change made in any of the components the
installation procedure needs to be replicated in order to
make sure that the newly developed features are installed
without a problem and that they do not interfere with
existing code.

SYSTEM CREATION AND
ADMINISTRATION

A solution that plays an important role in providing this
functionality is the fwConfigurationDBSystemInformation
tool provided by the JCOP framework team. It consists of
a schema for an oracle database, a WinCC script and a User
Interface (UI). The schema which is responsible for
holding the data is organized in such a way that allows the
association of the data in the various tables. The user can
register hosts, projects as well as specific information
about them and components. Then tree structures can be
created by assigning projects to hosts and components to
projects. The UI is used as the interface between the user
and the database in order to view and alter its contents and
of course create tree structures like the ones mentioned
above. The script is the interface between each project and
the database, enabling data flow from the project to the
database and the other way around.

The logic behind the tool is that an instance of the script
runs in every project and updates the database with the
project’s information every time a user-defined interval has
elapsed. Since the user has stored the project’s information,
any discrepancy between the project and the database can
be identified and reported. Additionally the project can
store its local component related information. This consists
of which components and when they were installed and if
the operation was carried out successfully again allowing
for discrepancy reporting and fixing.

This tool is used extensively by the central DCS team of
CMS for monitoring and administering all the control
system projects. This tool can operate in two modes with
the one specified above being the one called “local”. This
means that the database is used as a means for the project

to store its information and the actual project is the master.
Whatever happens in the project manually by the user is
stored in the database. A second mode exists which is
called “central”. In this mode, the database is used as a
reference point and all stored information in it is passed to
the project. In both modes the aforementioned script is
used as the link between the project and the database,
storing information in the database in the local mode and
changing the project settings in the central one. In the
central mode, apart from generic project information,
components are also installed and deleted based on the
database contents. In fact this is the mode used in CMS for
administering the production machines. Moreover, since
apart from the central team the rest of the community
involved in the control systems does not have direct access
to the control system machines, through this tool they are
allowed to interact with their systems. An interface is
provided to them through which they can modify the
contents of the database and thus install or re-install
components in the production systems.

An extension to this functionality was created in CMS.
A whole suite of batch files was developed in order to use
the database stored information to also create projects, not
just administer them. That is how the production systems
in CMS are created whenever this is needed. Either during
a normal installation, e.g. migration to new hardware or
new version of OS etc. or in case of recovering from
failure. This greatly eases the creation of projects as it can
be done with the execution of a single script.

PRODUCTION SYSTEM
REPRODUCTION

As it has already been stated, the need for system
creation is constant and could appear at any time, either in
production or in a development system. It was decided to
extend the tool and make its use possible also during the
development process. Though this would mean that
whenever information is changed in the database the
production systems may be affected. To avoid such
scenarios, a set of changes needed to be implemented in
order to avoid interference between the data stored in the
database for the production systems and the ones stored for
the development systems. This would allow the team to
give access to the tool also to new members that are not
experienced and would otherwise not be granted access in
order to not interfere with the production systems.

The chosen solution was the following. Two databases
where used instead of one, connected to each other with a
database link, and a set of three schemas. The first schema
is the production one that already existed. Let’s call it
schemaA for the shake of this example. So schemaA exists
in databaseA. In a second database, let’s call it databaseB
a second schema was created that was named schemaB.
This would hold all the development environment data. A
third schema was created, schemaA, in databaseB which
would be empty without any tables but contains only views
and triggers for redirecting the data to the correct schema.
For every table in the normal schema that comes with the

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA111

Control System Upgrades
MOPHA111

477

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

tool a view was created in schemaA in databaseB. The view
was constructed in such a way that it queries both other
schemas, schemaA in databaseA and schemaB in
databaseB. This way the tool can see all entries, both the
production and development ones. For every action that
can be done in the normal schema tables i.e. INSERT,
ALERT, DELETE a trigger was created in schemaA in
databaseB that would redirect all traffic to schemaB in
databaseB. This logic is displayed in Fig. 1. Following this
approach, all the production data such as project and host
info and all the registered components are available for use
in the development environment.

Figure 1: Schematic representation of the database
configuration used.

At the same time it was decided to extend the tool so that
it would be possible to copy structures. For example, as we
mentioned previously, during development it is crucial to
install new or revised components in an environment that
simulates what is used in the production control system.
Copying structures in the database would allow us to
quickly instruct the tool to create a copy of a production
project in one of the development machines. To do so, the
production data would have to stay hidden for modification
but at the same time be visible because they would have to
be copied. Using the copy structure functionality in the
database and then the batch file utilities, a production
environment could be recreated as quickly as possible.

EXTENDING COMPONENT
TARGETING

One of the main features of the original tool is
bookkeeping for the JCOP components. It provides a native
way of storing the list of components that are installed in
the project as well as the list of components that should be
installed. Components are organised using groups. The
user defines a group that contains a set of components, and
targeting it to a project automatically assigns all the
components of this group to the project. This allows for
easier targeting of multiple components and dependency
handling as we can ensure that bunches of components are
targeted at the same time.

A limitation on this approach was spotted on CMS in the
case of major software updates. An example of this would
be a new release of the JCOP framework where all its
components have to be reinstalled. At the same time, all the
CMS specific ones that are affected by the changes in the

framework need to also be modified and reinstalled. In
cases like this, new groups have to be created and
populated with the corresponding components. This is
because groups do not support multiple versions of the
same component as this could lead to inconsistencies,
because two versions of the same components would be
targeted at the same time. In addition to this, the installation
scripts running in each project have to be stopped because
inconsistencies would be detected between the project and
the database. Also, since the projects in CMS are operated
in central mode, not listed components would be deleted
causing problems to the system.

A new approach was implemented, keeping the old
design of groups but extending it in order to overcome the
above limitations. The solution was to use a “tag” that is
assigned to each component in the group and to the project.
This way, an extra constraint is used in order to associate
components to projects. Instead of automatically assigning
each component of a group to a project, now only the
components that are inside the group and have the same tag
as the project are assigned to it. An eventual upgrade will
then follow these steps: the group is modified by inserting
the new components with an updated tag; at the same time
the project’s tag is updated to match the one of the new
components; then everything would be automatically
targeted without the need to un-target things or stop scripts.

BROADENING THE USERBASE
As discussed above, the installation process is very

important in CMS. This is not only true for the central DCS
team that is responsible for maintaining the production
systems and making sure that they operate non-stop but
also for the members of the development community in
CMS that create control system related software and are
not in the central team. They have to make sure that what
they develop is in an operational state and can safely be
installed in the production systems. To ensure this, they
have to be able to simulate the installation process, which
means testing it in conditions that are as close as possible
to the production ones. This need became even more
important during the long shutdown 2 (LS2) – taking place
in 2019 and 2020 – as CMS is replacing all the DCS servers
and in parallel is following the general CERN update of
WinCC to its newest version. To accompany the changes
in WinCC version the JCOP team will also release a new
version of its framework that will be compatible with the
new WinCC version.

This combination of upgrades will require a lot of testing
and system recreation during the development period from
the whole CMS community, and of course, in the end, a
total system upgrade all of it with minimal or - if possible
- no downtime. The tool mentioned above with all the
upgrades done would be essential throughout this
procedure, saving a lot of time on the process. To ensure
that each of the teams work fully focused on their own
space and that no distraction or interference occurs
between the various groups in CMS, it was decided by the
central team to include the idea of ownership in the objects
in the database, more specifically in computers, projects,

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA111

MOPHA111
478

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System Upgrades

and groups of components. Therefore the workflow of each
team is optimised, because their work environments are
isolated and easily reproducible. This will play a key role
in the process of the upcoming upgrades in the CMS
infrastructure, both hardware and software, ensuring a
faster development lifecycle and a better testing
environment, minimising the possibility of undesired and
unpredictable behaviour during software deployment.

CONCLUSION
The creation procedure of new projects is a part of the

everyday work on the maintenance and improvement of the
control system in CMS, either because a system has to be
recreated to reproduce a potential problem, or a new feature
has to be tested in an environment that simulates the
production one. This is also true in cases of major software
upgrades or on hardware failure and upgrades. The
extensions of the fwConfigurationDBSystemInformation
tool presented in this paper have highly enhanced the level
of support provided by the central team, both in cases of
every day support and debugging as well as in the case of
system upgrades. Furthermore, making the tool available
to the whole CMS community has reduced the
development difficulties and the time consumed by the
members of the subsystem communities during the testing
period of development. The tool is expected to play an
important role in the upcoming hardware and software
migrations in CMS DCS in the next couple of years, as well
as in the upcoming ones as the system is continuously
evolving with time.

REFERENCES
[1] R. Gomez-Reino et al., “The Compace Muon Solenoid

Detector Control System”, in Proc. 12th Int. Conf. on
Accelerator and Large Experimental Control Systems
(ICALEPCS'09), Kobe, Japan, Oct. 2009, paper MOB005,
pp. 10-12.

[2] G. Bauer et al., “Status of the CMS Detector Control
System”, J. of Phys., Conference Series, vol. 396, Part 1,
2012.

[3] O. Holme, M. Gonzalez-Berges, P. Golonka and S.
Schmeling, “The JCOP Framework”, in Proc. 10th Int. Conf.
on Accelerator and Large Experimental Control Systems
(ICALEPCS'05), Geneva, Switzerland, Oct. 2005, paper
O3_005.

[4] R. Arcidiacono et al. , “CMS DCS Design Concepts”, in
Proc. 10th Int. Conf. on Accelerator and Large
Experimental Control Systems (ICALEPCS'05), Geneva,
Switzerland, Oct. 2005, paper P1_062.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA111

Control System Upgrades
MOPHA111

479

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

