
IMPROVING USER INFORMATION BY INTERFACING
THE SLOWCONTROL’ LOG AND ALARM SYSTEMS

TO A F EL X B E C ATI L H PLATFORM
M. Ritzert∗, Heidelberg University, Heidelberg, Germany

on behalf of the Belle II PXD Collaboration

Abstract
Research groups operating large experiments are often

spread out around the globe, so that it can be a challenge to
stay informed about current operations. We have therefore
developed a solution to integrate a slow control system’s
alarm and logging systems with the chat system used for
communication between experimenters. This integration is
not intended to replace a control screen containing the same
information, but offers additional possibilities:

• Instead of having to open the control system’s displays,
which might involve setup work (VPN, remote desktop
connections, . . . ), a web interface or an app can be used
to track important events in the system.

• Messages can easily be filtered and routed to different
recipients (individual persons or chat rooms).

• Messages can be annotated and commented on.

The system presented uses Apache Camel to forward mes-
sages received via JMS to Rocket.Chat. Since no binding
to Rocket.Chat was available, this interface has been imple-
mented. On the sending side, a C++ logging library that
integrates with EPICS IOCs and interfaces with JMS has
been designed.

IMPLEMENTATION
The gateway combines data from the BEAST alarm sys-

tem [1] and the message log. Both systems are configured
to publish their messages via the ActiveMQ message broker,
that is central to the distribution of all messages in the sys-
tem. The gateway is registered as a listener on the respective
channels. It receives all messages, filters them and forwards
to the Rocket.Chat server.

All messages are also archived in an Elasticsearch
database. Archived log messages from this database are
combined with live messages received via JMS to provide
a fast and comprehensive overview in the CSS GUI, that is
also used to control the alarm system.

The outline of the system is shown in Fig. 1. The gateway
between ActiveMQ and Rocket.Chat is implemented as an
Apache Camel application. Camel is a message routing en-
gine implemented in Java [2]. Its modular design means that
it is easy to provide new functionality on all levels interesting
for this work: message reception, transformation, routing
and output. Messages received in Camel applications are
passed through several different modules connected together
∗ michael.ritzert@ziti.uni-heidelberg.de

Log Messages Alarm Events

ActiveMQ

Message Transformation

Message Routing

Message Filtering

Message Reception

Message Output

Rocket.Chat

M
e
ssa

g
e
G
a
te
w
a
y

Figure 1: Processing Steps for Log and Alarm Messages.

from("activemq:topic:LOG")
.filter().method("LogFilter")
.bean("LogConverter")
.to("rocketchat:https://my.chat:←↩
#channel?accessToken=token&userId=user");

Figure 2: Example Camel Route for Log Messages.

to form a route. From the framework’s point of view, mes-
sages are passed around as anonymous Java objects. It is the
responsibility of the application to ensure that the output and
input expectations of connected modules match. Modules
can discard messages, or modify them to the extend that an
object of a different class is passed on.

In a typical configuration, there are at least two routes,
one for alarm messages, and another one for log messages.
Figure 2 shows the Java code to create a route for log mes-
sages from the LOG topic to #channel on a Rocket.Chat
server. The modules described below are implemented in
the LogFilter and LogConverter classes, and made avail-
able as the rocketchat: output module.

Message Logging
In order to log messages from an IOC, a C++ library,

Logfile, has been implemented. The most important func-
tionality is logging to an ActiveMQ server via the STOMP
protocol. The messages will be converted to the MapMes-

S

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOMPR002

MOMPR002
152

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)



sage format, as it is also used by the BEAST alarm system [3],
by ActiveMQ. The core of the library itself is independent
from EPICS. IOC Shell commands to configure the logging
setup at runtime are provided when the library is used within
EPICS IOCs. The logging can either be implemented within
the device support code itself, or accessed from sequencer
code or via sub records. A threaded design is used to de-
couple the main thread from the potentially time-consuming
output operations, and avoid blocking the normal operation
of the IOC.

Message Reception
On the input side, a suitable module to receive messages

from ActiveMQ is readily available [4]. A standard config-
uration is used to connect to the JMS server and subscribe
to the interesting channels: Alarm events are posted to the
..._SERVER topic, and a dedicated topic LOG is used for log
messages. For the message format used by the BEAST and
logging systems, the output of the module is a message rep-
resented as a Java Map<String, String>, i.e. key/value
pairs.

Message Filtering and Routing
The first action applied to incoming messages is the filter-

ing, since at this stage, the full message is still available.
For alarm messages, the filter condition is that the current

severity and the alarm severity match. This accepts only
events created when the alarm condition is triggered, while
messages created when acknowledging or releasing an alarm
are ignored.

For log messages, the most used filter looks at the sever-
ity of the message, to accept e.g. only WARNING or SEVERE
messages that should be broadcast to the wider audience
available via the Rocket.Chat server. Of course, it is also
possible to filter by any other property of the message, in-
cluding the actual text of the message.

Routing of messages to different recipients can be imple-
mented as a separate module, or integrated in the filtering
step. In any case, when messages are routed to different
recipients depending on the content, the information where
to route the messages to has to be attached to the message
by simply adding it with a well-known key to the map.

Message Transformation
When entering this module, all messages are still in a

key/value pair format. To allow posting to Rocket.Chat, they
have to be converted to a plain text format, with only few
additional options, namely the icon to display next to the mes-
sage, and the display name of the sender. This conversion is
done in custom Java modules for log and alarm messages,
respectively. After completing this stage, the message is now
in the format suitable for the Rocket.Chat output module.

The default configuration is to use special symbols for
log messages at the warning and severe levels, as well as for
alarm messages. The latter are also tagged with @here to
trigger a notification in the Rocket.Chat clients.

Figure 3: Rocket.Chat displaying messages from the alarm
and logging systems.

For messages where the recipient is not hardcoded but
stored in the message, this information is simply copied to
the new object.

Message Output
No module to interface Camel to Rocket.Chat was avail-

able, so a lightweight module, camel_rocketchat, has been
implemented.

Rocket.Chat offers several APIs for programmatic access.
The REST API [5] has been chosen, because it is easy to use,
and essentially stateless: No TCP connection has to be kept
alive (HTTP/2 can still be used, but will fall back to open-
ing a new connection, when required), and no information
beyond the login token has to be stored between requests.
In combination with a personal access token obtained once,
there is exactly a single HTTP request per message to be
posted, and the implementation is straightforward.

The actual implementation consists of two parts: A small,
generic module implementing the posting of messages to
Rocket.Chat, and a second module that wraps around it to
provide the interfaces as required by Camel.

RESULTS
The system as described above has been implemented

for the Belle 2 PXD subdetector. A significant fraction of
the hardware used in the system is custom built, so that log
messages are available directly from the device support layer.
For other IOCs, logging has been integrated in Sequencer
programs, or interfaced to via sub records. In total, around
50 IOCs provide log messages. A single Camel application
with several routes handles the output of all log messages
with at least WARNING severity, and all alarm messages to a
dedicated Rocket.Chat channel, as well as the routing of a
few filtered messages to channels dedicated to special topics.
Figure 3 shows the rendering of two log messages and one
alarm event displayed in the Rocket.Chat channel in the web
browser.

CONCLUSION AND OUTLOOK
We presented a simple approach to integrate a slow control

system’s logging and alarm information into the chat plat-
form also used for communication between the shifters. The
solution is based on Apache Camel, that provides the frame-
work for the messages processing pipeline, and the function-
ality to receive messages from ActiveMQ. Small modules
to filter, route and convert messages have been implemented.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOMPR002

User Interfaces, User Perspective, and User Experience(UX)
MOMPR002

153

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Thanks to the modular nature of Camel, switching from
Rocket.Chat to other output modules could be implemented
with only minimal changes to the code.

While, at present, the filtering and routing configuration
is statically built into the executable, one could envision a
system where each user can configure their own filter for
messages posted either directly to the user’s account or to a
channel the user set up only to receive log messages.

REFERENCES
[1] K.-U. Kasemir, X. H. Chen, and E. Danilova, “The Best

Ever Alarm System Toolkit”, in Proc. 12th Int. Conf.
on Accelerator and Large Experimental Control Sys-
tems (ICALEPCS’09), Kobe, Japan, Oct. 2009, paper
TUA001, pp. 46–48.

[2] Apache Camel, https://camel.apache.org

[3] Control System Studio Guide,
http://csstudio.sourceforge.net/docbook/
ch14.html#idm140287028562704

[4] ActiveMQ component,
https://camel.apache.org/components/
latest/activemqcomponent.html

[5] Rocket.Chat REST API,
https://rocket.chat/docs/developerguides/
rest-api/

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOMPR002

MOMPR002
154

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)


