
THE DESIGN OF INTELLIGENT INTEGRATED CONTROL SOFTWARE
FRAMEWORK OF FACILITIES FOR SCIENTIFIC EXPERIMENTS

Z. G. Ni†, L Li, J. Luo, J. Liu, X. W. Zhou

 Institute of Computer Application, China Academy of Engineering Physics, Mianyang City, China

Y. Gao, Stony Brook University, New York, USA

Abstract
The control system of the scientific experimental facili-

ty requires heterogeneous equipment access, domain
algorithm, sequence control, monitoring, log, alarm and
archiving. We must extract common requirements such as
monitoring, control, data acquisition. Based on the TAN-
GO framework, we design typical device components,
algorithms, sequence engines, graphical models and data
models for scientific experimental facility control systems
developed to meet common needs, and are named the
intelligent integrated Control Software Framework of
Facility for Scientific Experiments (iCOFFEE). As a
development platform for integrated control system soft-
ware, iCOFFEE provides a highly flexible architecture,
standardized templates, basic functional components and
services for control systems that increase flexibility, ro-
bustness, scalability and maintainability. This article
focuses on the design of the framework, especially the
monitoring configuration and control flow design.

INTRODUCTON
Large scientific facilities [1] generally have tens of

thousands to hundreds of thousands of irregular control
points, and the types and quantities of controlled devices
are huge. The control system must be highly automated
and robust, requiring continuous operation for many days.
The construction period of the project is long, and the
demand in many fields will constantly change. The con-
trol system must accept these changes and adapt to the
changing and expanding needs.

We urgently need to consolidate the common require-
ments of monitoring, control, data acquisition and storage
of the control system to meet the functional performance
requirements of the facility's control system. iCOFFEE is
a distributed, hierarchical, object-oriented control soft-
ware framework through which many similar application
software systems are built.

This control software framework [2] is devised to ad-
dress the general problem of providing distributed control
for large scientific facilities that do not require real-time
capability within the supervisory software. Sometimes
real-time control is also necessary, which is partly solved
by an integrated time system or an industrial control sys-
tem, which is not discussed in this article.

SYSTEM ARCHITECTURE
The control system architecture of a typical large scien-

tific facilities is a two-tier architecture consisting of a
monitoring layer of the network structure and a control
layer of the fieldbus structure. The monitoring layer is
deployed on the virtual server and the console computer
to provide centralized operations for control, status, and
data storage. The control layer is deployed on the virtual
server or embedded controller to provide real-time collec-
tion and control of the device.

Figure 1: The control system architecture of the typical
large scientific facilities [3].

As provided in Fig. 1, the monitoring layer is a soft-
ware system based on Ethernet structure. It consists of a
network switching system, a server system, and a console
computer. It provides system services and human-
machine interfaces for the facility control system, includ-
ing control, monitoring, and data management.

The control layer is a fieldbus-based data acquisition
and control software system consisting of a network
switching system, a server system and an embedded con-
troller. The device service software is used to collect and
control the device.

The control point consists of sensors and actuators that
are connected to the control layer via a fieldbus or net-
work interface. A large number of IO devices are accessed
through the PLC controller, and several intelligent con-
trollers directly access the aggregation switching system
through a serial port server or a network interface.

SOFTWARE ARCHITECTURE
In order to realize the special requirements of the facili-

ty control system, the software architecture will adopt a
hierarchical SOA model, which is a typical pyramid mod-
el, which is aggregated layer by layer, and the granularity
is larger. The software is divided into three layers: device ___

† email address: drops.ni@caep.cn

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOMPL007

MOMPL007
132

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

service layer, system service layer and integrated monitor-
ing layer, as provided in Fig. 2.

Figure 2: The software architecture of the typical large
scientific facilities [4]

The integrated monitoring layer provides a unified in-
tegrated operating environment for the control operation
of the entire facility, enabling centralized control, moni-
toring and data management of the entire facility; the
integrated monitoring layer can be divided into three
different dimensions of integrated control functions ac-
cording to actual needs: facilities, systems, groups.

The system service layer provides a combined control
function for a single system under a bundle group, which
is a large-scale control function aggregation of the device
service layer, and this layer provides parameter delivery
and experimental data archiving.

The device service layer provides software mapping for
independent devices to implement device control, status
acquisition, device diagnostics, and self-test, using device
drivers. Therefore, all heterogeneous devices implement
the unification of software interfaces and provide con-
sistent standard services on network protocols.

THE SOFTWARE DEVELOPMENT
ENVIRONMENT

The entire life cycle of software development is man-
aged by software quality assurance measures. EA (Enter-
prise Architect) supporting UML language is used to
implement a series of software design operations from
requirements analysis to summary design, detailed design,
database design, testing, release, and deployment.

The EA is used to analyze and design the requirements
in detail, define classes, and model the interfaces and
attributes of the software objects. The skeleton code of the
device service is generated by the TANGO [5] code gen-
eration tool, and the QT integrated development environ-
ment is used to fill the personalized code to realize the
development of the device service.

The configuration of graphical components, data com-
ponents and monitoring schemes is achieved through the
framework's integrated development tools.

In order to develop cross-platform GUI software, QT
software was used for development. Two software mid-
dleware, TANGO and Thrift, were chosen.

THE CONTROL SOFTWARE
FRAMEWORK DESIGN

The control software framework named iCOFFEE is a
collection of interconnected abstract components, as pro-
vided in Fig. 3. The framework provides standard models
and configuration tools, which effectively improves the
reuse of code, reduces the construction cost and software
quality of the application software, and provides a basis
for long-term maintenance and update of the software.
iCOFFEE is more like a factory that can quickly build
applications for control systems for specific scientific
facilities.

Figure 3: The main components of the iCOFFEE framework.

.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOMPL007

Software Technology Evolution
MOMPL007

133

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

The control software framework is based on the typical
distributed software architecture of the software bus
(TANGO/THRIFT) [6], which consists of an integrated
runtime environment, a public service, a device service
library, a domain algorithm library, and an experimental
sequence library. The integrated operating environment is
the software portal, which mainly implements monitoring
interface configuration, operation and service manage-
ment. At the same time, application software such as
configuration tools, code generation tools, public services
and debugging tools can be called in this environment.
Public services provide services such as logging, alarming,
and data archiving. The software equipment library in-
cludes software equipment library, domain algorithm
library, and control sequence library, which are continu-
ously built by the integrated development environment
and will be more and more over time.

The main components of the framework are described
in detail in subsequent articles.

DEVICE LIBRARY BASED ON
DEVICE MODEL

Realize software equipment library, domain algorithm
library, control flow library and other equipment based on
TANGO software middleware. The Thrift-based IDL
language defines input and output type devices such as
serial servers and OPC [7] servers.

a) Software equipment library: motor, camera, oscillo-
scope, energy meter, etc.

b) Domain algorithm library: image de-drying algo-
rithm, image feature extraction algorithm, fault diagnosis
fuzzy inference algorithm, etc.

c) Experimental process library;
d) Public service library: experimental data archiving,

historical data archiving, alarms, log collection, system
health monitoring, etc.

COMPONENT-BASED INTEGRATED
OPERATING ENVIRONMENT

Monitoring and Control
The application software provides a graphical human

interface for the operator, on the console computer or
terminal. The human-machine interface is realized based
on the framework configuration, which ensures the quali-
ty of the code. The configuration of the monitoring and
sequence is based on the configuration tools provided by
the framework.

Graphical Component
Build a complex graphical display based on simple

graphical element definitions, saved as a new graphical
component that continues to build more complex graph-
ical components as an element. These components are
stored in the graphics library as assets for reuse by new
applications.

The update of the status data uses the asynchronous
event mode, and the command uses the synchronous
scheduling mode.

Data Component
The data component is a scriptable input and output

model, and the input and output parameters are in JSON
format. You can build complex nested key-value models
using four simple types (Integer, Float, Boolean, and
String) to continue building more complex data artifacts
as a new element. Data components currently only sup-
port synchronous scheduling mode, and asynchronous
event mode is supported in the future.

Device Proxy Manager
It is responsible for creating and managing multiple de-

vice agents. The user does not care about the connection
of the device service. It only automatically obtains control
capabilities based on the command name. After the execu-
tion is completed, the execution result is normal or ab-
normal. In order to cope with the large number of device
services, the device proxy manager is implemented in a
multi-process architecture similar to Chrome software, as
provided in Fig. 4.

Figure 4: Multi-process architecture.

 Real-time Data Manager
The real-time data manager uses the factory mode to

create and manage state data. The user does not care
about the connection of the device service, and only au-
tomatically obtains the state data according to the attrib-
ute name, by polling or event mode.

To cope with the proliferation of device services, real-
time data manager uses a multi-process architecture simi-
lar to Chrome software.

Sequence Engine
The sequence engine implements an ordered scheduling

capability of the software device service based on the
DAG model to implement sequence loading, starting,
resetting, and stopping. The sequence engine supports
serial mode, block mode, parallel branch mode, and con-
ditional (abnormal) selection mode. It can implement
concurrent execution of no less than 100 nodes, support
nesting, and support more than 3 levels of nesting levels.
The example of sequence running was shown in Fig. 5.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOMPL007

MOMPL007
134

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

Figure 5: Display of sequence engine.

A sequence consists of one or more atomic steps or se-
quences in a certain relationship. The constituent ele-
ments (sequences) are abstracted into one node. A node is
an ordered nested assembly. A node consists of one or
more child nodes. There is an ordered relationship be-
tween the child nodes, which can be expressed by a di-
rected acyclic graph (DAG). The sequence is designed to
be a node class that runs automatically. The sequence is
created by the node factory class. The state of the node is
marked by the state machine. The automatic execution of
the node is implemented through the thread pool. The
node information class holds configuration information of
the node. Remote scheduling of atomic nodes is imple-
mented by a node execution class.

DATA COLLECTION AND
INTELLIGENT ANALYSIS

The data mentioned here includes experimental data,
equipment historical data, log data and system health data.
The data is collected and stored in a centralized manner
and intelligently analyzed by various data services. Vari-
ous experts use the big data analysis platform according
to the needs of their respective fields. Data is used for
data mining and analysis in various dimensions. (See
Fig. 6.)

Figure 6: Data collection and intelligent analysis.

Experimental Data Archiving and Historical
Data Archiving

Data archiving is divided into experimental data archiv-
ing and historical data archiving. [8]

The experimental data is archived to collect and store
the experimental data of the device, according to the
number of the experiment. Historical data archiving col-
lects data status information during device operation for
later analysis of equipment failures and other technical
analysis, effectively improving equipment maintenance
efficiency and reliability.

Message Log Collection
The message log is automatically generated by the

TANGO software, and the service based on Thrift gener-
ates a log structure similar to the Tango software. The log
uses file local storage, collects logs through open source
software, and implements intelligent analysis of logs
through intelligent data analysis systems.

System Health Monitoring
Build a system health collection service. It collects the

operating data of the system's network, CPU, and memory,
and automatically alarms according to the health algo-
rithm. All data is archived through the data archiving
service for later big data analysis.

At the same time, the system health monitoring system
has a central view of all service states, which can partially
amplify the service status view of a certain area and ex-
pand layer by layer to evaluate the overall performance of
the system [9].

CONCLUSION
Construction of the iCOFFEE incorporates many of the

latest advances in distributed computer and object-
oriented software technology. Primary goals of the design
are to provide an open, extensible, and reliable architec-
ture that is used by many entities and provides long-term
maintenance and upgrades. The original intention of the
design was to reuse the software and quickly build the
application software.

Based on the framework of Tango and Thrift, the
framework uses the factory architecture and component
technology to continuously make the software reuse to a
higher level, and build a big data analysis platform based
on data collection.

In the future, we will add artificial intelligence technol-
ogy to the framework, and do more research and explora-
tion in the acquisition control system and data analysis
and processing.

REFERENCES

[1] J. A. Paisner and J. R. Murray, "The National Ignition Facil-
ity for Inertial Confinement Fusion", in Proc. Fusion Engi-
neering, Nov. 1997. doi:10.1109/FUSION.1997.685664

[2] R. W. Carey, K. W. Fong, R. J. Sanchez, J. D. Tappero, and
J. P. Woodruff, “Large-Scale CORBA-Distributed Software
Framework for NIF Controls”, in Proc. 8th Int. Conf. on Ac-
celerator and Large Experimental Control Systems
(ICALEPCS'01), San Jose, CA, USA, Nov. 2001, paper
THAI001, pp. 425-429.

[3] D. J. Yao et al., “Research on Software Architecture of
Centralized Control System for High Power Laser Facilities,
Computer Engineering and Design”, vol. 28, pp. 1737-1740,
2007.

[4] Wikipedia, https://en.wikipedia.org/wiki/
Hierarchical_control_system.

[5] https://tango-controls.readthedocs.io

[6] Wikipedia. Remote Procedure Call [EB/OL],
http://www.en.wikipedia.org/wiki/Remote_proce
dure_call, 2011.11.28

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOMPL007

Software Technology Evolution
MOMPL007

135

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

[7] T. Hannelius et al., “Roadmap to adopting OPC UA”, in
Proc. 6th IEEE International Conference on Industrial In-
formatics, pp.756-761, 2008.
doi:10.1109/INDIN.2008.4618203

[8] L. Pivetta et al., “New Developments for the HDB++
TANGO Archiving System”, in Proc. 16th Int. Conf. on Ac-
celerator and Large Experimental Physics Control Systems
(ICALEPCS'17), Barcelona, Spain, Oct. 2017, pp. 801-805.
doi:10.18429/JACoW-ICALEPCS2017-TUPHA166

[9] Z. Ni, J. Liu, J. Luo, and X. Zhou, “The Design of Tango
Based Centralized Management Platform for Software De-
vices”, in Proc. 16th Int. Conf. on Accelerator and Large
Experimental Physics Control Systems (ICALEPCS'17),
Barcelona, Spain, Oct. 2017, pp. 1121-1124.
doi:10.18429/JACoW-ICALEPCS2017-THBPL04

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOMPL007

MOMPL007
136

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

