
THE ELT M1 LOCAL CONTROL SOFTWARE:
FROM REQUIREMENTS TO IMPLEMENTATION

L. Andolfato†, J. Argomedo, C. Diaz Cano, R. Frahm, T. R. Grudzien, N. Kornweibel,
D. Ribeiro Gomes dos Santos, J. Sagatowski, European Organisation for Astronomical Research in

the Southern Hemisphere (ESO), Garching bei Muenchen, Germany
C. M. Silva, Critical Software, Coimbra, Portugal

Abstract
This paper presents the ELT M1 Local Control Software.

M1 is the 39m primary mirror of the Extremely Large Tel-
escope composed of 798 hexagonal segments. Each seg-
ment can be controlled in piston, tip, and tilt, and provides
several types of sensor data, totalling 24000 I/O points. The
control algorithm, used to dynamically maintain the align-
ment and the shape of the mirror, is based on three pipe-
lined stages dedicated to collect the sensors' measurements,
compute new references, and apply them to the actuators.
Each stage runs at 500Hz and the network traffic produced
by devices and servers is close to 1.2 million UDP pack-
ets/s. The reliability of this large number of devices is im-
proved by the introduction of a failure detection isolation
and recovery SW component. The paper summarizes the
main SW requirements, presents the architecture based on
a variation of the estimator/controller/adapter design pat-
tern, and provides details on the implementation technolo-
gies, including the SW platform and the application frame-
work. The lessons learned from deploying the SW on CPUs
with different NUMA architectures and from the adoption
of different testing strategies are also described.

INTRODUCTION
The European Southern Observatory is building the Ex-

tremely Large Telescope (ELT): one of the largest opti-
cal/near-infrared telescope in the world that will gather 13
times more light than the largest optical telescopes existing
today. The telescope is located on top of Cerro Armazones
in the Atacama Desert of northern Chile.

One key component of the ELT is the concave 39m pri-
mary mirror (M1) made of 798 quasi-hexagonal mirror
segments of approximately 1.45m in size. M1 segments are
controlled by the M1 Local Control System (M1LCS).

M1LCS prototyping activities started in 2011 with the
goal to validate and consolidate the system design [1]. Fi-
nal design review was passed in October 2017 and one
month later started the development of the control SW. Af-
ter less than 2 years of development, the first version of
M1LCS control SW is being released.

SYSTEM DESCRIPTION
A detailed description of the M1 local control system is

given in [2]. The segmented primary mirror of the ELT
(Fig. 1), is composed of six sectors with 133 segments
each. Segments within a sector are organized in flowers.

One flower groups up to seven segments which are con-
nected to a segment concentrator cabinet (SegC). There are
132 SegC cabinets and each cabinet hosts:
• the controllers for the field electronic devices (FE):

edge sensor (ES), position actuator (PACT), and warp-
ing harness (WH);

• a Programmable Logic Controller (PLC) and a power
supply unit (PSU) for power distribution control and
temperature monitoring;

• a network switch connecting the PLC and FE control-
lers to the sector distribution (SecD) network switch
that is connected to the computer room (CR).

Figure 1: M1 primary mirror made of 798 segments within
the ELT main structure.

Field Electronic Devices
The ES measure the relative out-of-plane (piston), and

in-plane translation displacements (gap, shear) of a seg-
ment with respect to its neighbours. Each segment is
equipped with six edge sensors with nm resolution.

The PACT are driving dynamically the segment in pis-
ton, tip and tilt in order to keep them aligned within the
required accuracy under variable load conditions and dis-
turbances. They are high accuracy linear actuators attain-
ing nm resolution along a stroke of 10mm with internal
feedback control.

The WHs are used to change the shape of the segment
by applying different axial support forces to the mirror seg-
ment. This is achieved by a set of nine motors integrated in
each segment support (Fig. 2).

 __

† landolfa@eso.org

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOBPP04

MOBPP04
38

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

Figure 2: M1 Segment Assembly with ES, PACT, WH.

Power Distribution and Control
Within one flower, the power to the FE devices and the

SegC network switch is provided by a PLC connected to
the power supply unit. The PLC also monitors the temper-
atures, the door, and the maintenance switches of the SegC
cabinet (Fig. 3).

Figure 3: Electronic components within a SegC cabinet:
PSU (in grey), PLC (in red), switch (bottom), and
ES/PACT/WH control modules (in yellow/blue/green).

Network Infrastructure
The M1LCS communication infrastructure consists of a

control network and a deterministic network. The control
network is used by the operators and the servers for the
non-real-time communication. The deterministic network
is used for the real-time traffic and it is based on a star to-
pology connecting:
• the FE devices and PLCs to the 132 SegC 1G switches;
• the SegC switch to a SecD 10G switch;
• the SecD switches (one every two sectors) to the 10G

computer room (CR) switch;
• the servers to the computer room switch.

Deterministic network fault tolerance is improved by
adding redundant CR and SecD switches as illustrated in
Fig. 4.

Figure 4: Redundant deterministic network topology con-
necting PLC/ES/WH/PACT to SegC, SecD, and CR.

Time Reference System
The M1LCS servers are synchronized to the observatory

time reference signal using the Precision Time Protocol
(PTP) [3]. The field electronic devices (ES, PACT, WH)
are synchronized with a UDP packet (SYNC), generated by
the M1LCS control SW, containing the observatory time.
The PLCs are synchronized using the Network Time Pro-
tocol (NTP) [4]. The PTP grandmaster and the NTP use the
same time reference generator.

REQUIREMENTS
The main responsibility of the M1LCS is to control and

monitor the 798 segments. M1LCS does not control the
shape of the whole M1. This task, called Figure Loop, is
assigned to the M1 Local Supervisor SW (M1LSV) that
uses the services provided by M1LCS to maintain a given
optical quality for the duration of the observation. The most
challenging SW requirements include:
• the generation and the distribution of the SYNC UDP

packet to the FE devices and to M1LCS servers every
2ms, with 10µs accuracy;

• the ability to receive, combine, and deliver the ES and
PACT measurements (1596 UDP packets) to the
M1LSV in less than 2ms;

• the distribution of the PACT reference positions (798
UDP packets), received from M1LSV, within 2ms;

• the periodic collection of the FE performance and te-
lemetry messages (7182 UDP packages every 1 to 10s)

• the detection, isolation, and recovery of faulty ES
measurements. New synthetic ES measurements have
to be provided to M1LSV within 1s from the failure;

• the configuration management of 2394 FE devices,
132 PLCs, and 140 network switches.

As additional goal, the solution should minimize HW
and SW obsolescence costs by adopting widely used
COTS components and avoiding vendor specific solu-
tions.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOBPP04

Software Technology Evolution
MOBPP04

39

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

ARCHITECTURE

The ELT Control Software Overview
The ELT Control SW is based on an hierarchical layered

architecture having at the top level the instrument driving
the observation and using the services provided by the tel-
escope control SW (TCS). Within the TCS, a global super-
visor (GSV) coordinates the work of each subsystems:
dome, telescope main axes, M1, M2, etc. Each subsystem
is made of two parts: the Local Supervisor (LSV) and the
Local Control Software (LCS). The LSV operates in the
telescope domain while LCS operates in the device do-
main. For example, the M1LSV is responsible for control-
ling and maintaining a certain optical quality of the whole
telescope primary mirror surface. The M1LCS, instead, is
in charge of controlling the M1 actuators and sensors mak-
ing sure that the failure of a single component or segment
does not affect the operation of the complete system. Fig-
ure 5 shows a simplified version of the ELT SW layers.

Figure 5: A simplified view of M1LCS within the ELT
control SW (only M1 and M2 subsystems are shown).

Communication Patterns
One key aspect of the M1LCS system is the adoption of

UDP multicast for the distribution of measurements. This
allows to add any number of measurements recipients in
parallel simply by configuring a network switch. This ap-
proach introduces the possibility of scaling performance by
adding more servers (or more NICs within a server), im-
prove robustness by adding redundant applications, meas-
ure performance and debug communication by adding
sniffers. Commands and references are, instead, sent via
UDP unicast. The M1LCS SW uses the request/reply com-
munication pattern for the control flow and pub/sub for the
data flow.

Monitor, Controller, and Adapter Pattern
The M1LCS SW adopts some of the architectural pat-

terns defined in State Analysis [5]. In particular, the esti-
mator-controller-adapter pattern is used to distribute the re-
sponsibilities between device monitoring, device manage-
ment, and device access as shown in Fig. 6. A manager
(mgr) is an application that can send commands to one or
more device via the device adapter (devAdapter). A moni-

tor (mon) is an application that can monitor the measure-
ments, status/health, and performance of one or more de-
vices via the devAdapter. The devAdapter is a library trans-
lating the manager’s commands into the device protocol
and the information produced by the device into a protocol
understandable by the monitors. Monitors can store the re-
ceived data in a “common database”, the Runtime DB, us-
ing the dbAdapter library. Managers can access infor-
mation stored in the common Runtime DB via the
dbAdapter API.

Managers and monitors applications can be coordinated
(initialized, started, stopped) by a supervisor (e.g. M1LSV)
as illustrated in Fig. 7.

Figure 6: Adaptation of the State Analysis estimator-con-
troller-adapter pattern.

Figure 7: Estimator-controller-adapter pattern with Super-
visor.

Fault Detection, Isolation, and Recovery
In order to provide fault detection, isolation and recovery

functionalities, a dedicated manager (FDIRmgr), similar to
the goal monitor of State Analysis, has been introduced as
shown in Fig. 8.

Figure 8: Estimator-controller-adapter pattern with Super-
visor and FDIR manager.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOBPP04

MOBPP04
40

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

The (LSV) supervisor distributes the commands to the
managers and the goals to achieve to the FDIR manager(s)
via a dedicated SetGoal command. The FDIR manager is
in charge of monitoring periodically the information writ-
ten by the monitors in the Runtime DB and verify whether
the goals have been achieved or not. In case of missed
goals, the FDIR manager can start recovery actions by
sending commands to the managers. The (LSV) supervisor
is responsible for avoiding conflicts with the FDIR man-
ager when sending commands to the other managers.

Generic Application State Machine
Monitor and manager applications share the same basic

behaviour defined in Fig. 9 which consists of three states:
IDLE, RUNNING, and ERROR. IDLE means that the ap-
plication has been launched and initialized. With the Start
command, the application enters the RUNNING state and
starts the working thread(s). For monitoring applications,
the working thread(s) are used to receive the measurements
via the device adapter library while for manager applica-
tions the working thread(s) send the commands to the de-
vices.

Figure 9: Monitors and Managers application behaviour.

System Partitioning
The M1LCS SW has been partitioned into seven subsys-

tems:
• Field Electronics (FE) to manage ES/PACT/WH de-

vices. It includes: FeAdapter library to talk to devices,
FeMeasMon to collect the measurements, FeRefMgr
to send the references, FeInfoMon to collect the per-
formance and telemetry messages, FeCmdMgr to send
commands, FeConfig to deal with devices configura-
tion.

• Sync (SYNC) to synchronize M1LCS devices and ap-
plications. It includes: PtpAdapter to retrieve PTP
time, SyncAdapter to receive the SYNC message,
SyncMgr to generate the SYNC UDP message, Sync-
Mon to collect period and jitter statistics on the SYNC
message.

• Power Distribution and Control (PDC) to manage
PLCs. It includes: PdcAdapter library to talk to the

PLCs, PdcMgr to send commands to the PLCs,
PdcMon to collect information produced by the PLCs.

• Network switches (NET) to manage the network
switches. It includes: NetAdapter library to talk to the
switches, NetMon to collect information on the
switches.

• Fault Detection Isolation and Recovery (FDIR) to trig-
ger alarms/corrective actions in case of faults. It in-
cludes: the FdirNpm library implementing a computa-
tionally expensive algorithm to detect invalid ES
measurements and the FdirMgr to process the infor-
mation collected by all monitoring applications, detect
faults, and trigger alarms/corrective actions.

• Common libraries to access the runtime DB, serial-
ize/deserialize messages, to deal with system configu-
ration, and other common services.

• Tools containing engineering GUIs, scripts, and simu-
lators used for testing.

IMPLEMENTATION

Application Stack
The M1LCS SW has been developed using the Rapid

Application Development framework (RAD) on top of a
Software Platform and the ELT Development Environment
as illustrated in Fig. 10.

Figure 10: M1LCS SW application stack.

The ELT Development Environment [6] includes:
• OS: Linux CentOS with RT patch (CERN distribution)
• Languages: GCC C/C++, Python
• Building system: waf + ESO wtools
• Documentation: doxygen
• Unit tests: Google Tests, Unittest
• Integration tests: Robot Framework
• Continuous Integration: Jenkins
• Configuration Management: SVN
• Deployment: Nomad/Consul
• Other Tools: cpplint, cppcheck, valgrind, pylint

The Software Platform provides services common to all
M1LCS applications. Since the official ELT Software Plat-
form, the Core Integration Infrastructure, has not been re-
leased yet, a temporary platform, which includes the com-
ponents described in Table 1, has been selected.

All M1LCS applications shares the same design defined
by RAD, the application framework developed by ESO.
RAD is a toolkit that allows to quickly create event driven
applications based on the Software Platform described

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOBPP04

Software Technology Evolution
MOBPP04

41

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

above and with the support of a state machine engine. RAD
provides an event loop based on Boost.Asio [7] integrated,
via AZMQ [8], with ZeroMQ [9] to be able to react to in-
coming requests/replies and pub/sub topics. RAD encapsu-
lates ZMQ messages into events which are injected into a
state machine engine based on an SCXML interpreter [10].
Events are defined using a Domain Specific Language
(DSL). The SCXML state machine definition can be gen-
erated from UML/SysML models using the COMODO
tool [11]. For example, the application behavior shown in
Fig. 9 is converted into an SCXML model which is loaded
and interpreted at run-time. The initial version of a RAD
based application is generated from pre-defined templates
using the Cookiecutter tool [12].

Table 1: M1LCS Temporary Software Platform

Service Product Description

Messaging ZeroMQ
OPC-UA

Request/reply, pub/sub.
PLC communication.

 Goolge
ProtoBuf

Message serializa-
tion/deserialization.

Configura-
tion

YAML Based on local files +
Redis.

Runtime
DB

Redis In memory key-value
store (Redis).

Logging EasyLog-
ging

Local logging.

Erorr Han-
dling

N/A Based on exceptions.

Alarms N/A Based on Runtime DB
GUI PySide2 QT for Python

Runtime DB
M1LCS applications exchange data such as measure-

ments, status, statistics, etc., using pub/sub communication
pattern. The Runtime DB adapter libraries provide two
ways of publishing information:
• over shared-memory for the low-latency transfer of

ES/PACT measurements from M1LCS to M1LSV.
• over ZMQ to transfer non real-time information be-

tween M1LCS applications and GUIs and M1LSV.

Moreover, M1LCS applications publish information to
Redis [13] to make the system observable. Information
stored in Redis can be used to: debug the system, provide
data to the GUIs, and get a complete overview of the sys-
tem status. Redis is also used to store some global system
configuration parameters such as the communication pa-
rameters to talk to the devices.

Enabling the Figure Loop
The core of the M1LCS SW is represented by the FeA-

dapter library. This library, using a standard Linux network
stack, is able to receive 798000 UDP pkt/s from the ES and
PACT devices and, at the same time, send 399000 UDP
pkt/s to the PACT devices. This is achieved by using:

• Two NICs on the same server: one dedicated to receive
ES measurements and one to receive PACT measure-
ments and send PACT references.

• Intel Ethernet Flow Director to steer the incoming
packets to different network queues [14].

• NIC interrupts affinity to pin network interrupts to spe-
cific CPU cores [15].

• RAW sockets configured with the PACKET_FAN-
OUT option [16] to distribute the packets arrived on a
given CPU core to a well-defined FeAdapter thread.

• Isolated CPU cores by applying the real-time profile to
specify which core should not be used by the OS.
Cores to be isolated have to be selected considering the
NUMA architecture of the servers with the goal of
minimizing the memory access latency/distance be-
tween the memory used by NIC/PCI, the cores execut-
ing the interrupt handlers, and the cores running the
FeAdapter threads.

• Setting some BIOS options and OS services: configure
memory channel interleaving (all memory channels
should be occupied), hyper-threading disabled, irqbal-
ance service disabled.

Figure 11 shows the flow of the incoming ES/PACT
measurement UDP packets to specific FeAdapter threads.

Figure 11: Ethernet packets flow.

The FeAdapter library is the result of previous prototyp-
ing activities [17] and it is used by the FeMeasMon and the
FeRefMgr applications. The FeMeasMon combines the
ES/PACT measurements received by the FeAdapter
threads into a vector which is written to the shared-
memory. The LSV Figure Loop controller reads from the
shared-memory the measurements and computes the new
PACT references. The resulting vector is written into
shared-memory and used by the FeRefMgr to send, via the
FeAdapter, the new positions to the PACT devices. This
three-stage activity (measurements acquisition, references
computation, references distribution) is pipe-lined as illus-
trated in Fig. 12.

Figure 12: Figure Loop stages.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOBPP04

MOBPP04
42

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

The FeAdapter library is also used by FeInfoMon appli-
cation to receive telemetry and performance messages pro-
duced by the ES, PACT, and WH devices at a lower rate
(4788 pkts/s).

Fault Detection, Isolation, and Recovery
FDIR is implemented as a manager application with a

RUNNING state specialized with orthogonal regions [18].
Each region defines the state of an evaluator using the
EVAL_ENABLED and EVAL_DISABLED sub-states.
Each evaluator is implemented with a dedicated thread
that, when enabled (i.e. in the EVAL_ENABLED state), is
responsible for evaluating one or more goals.

A goal represents a condition to monitor. It is described
by an identifier, a time interval indicating when to evaluate
the goal, a flag to indicate whether the goal has to be eval-
uated or not, and a status flag indicating whether the goal
is satisfied, i.e. the condition to monitor is satisfied, or not.
Goals are enabled, disabled and configured via the SetGoal
command.

When a goal is enabled, the associated evaluator thread
will subscribe to the topic(s) published by M1LCS moni-
toring applications and required to evaluate the goal; then
it will periodically compute the goal status. If the goal is
not satisfied, an alarm containing the reason is published.
In the case of faulty ES, the evaluator provides also an es-
timation of the expected ES measurement to avoid break-
ing the Figure Loop.

Configuration Management
M1LCS SW provides dedicated applications to retrieve,

compare, and apply the configuration of the HW under
control. For the FE devices, FeConfig application uses the
FeCmdMgr to get/set, asynchronously, the ~50 parameters
of the 2394 devices. For the TwinCAT PLCs [19], a dedi-
cated application, TcPutty, has been developed to configure
and download the PLC code to all 132 PLCs. Similarly, the
NetConfig application has been implemented to get/set the
140 network switches configuration files.

Graphical User Interfaces
Engineering panels have been developed in Python using

PySide2 [20]. They retrieve information to be displayed by
polling Redis or by subscribing to ZMQ topics. Commands
are sent to the applications via the ZMQ request interface.

The following GUIs have been developed:
• dbBrowser to read, write, monitor, and record Redis

keys/values.
• m1StatusGui to monitor M1LCS SW applications and

send commands. It can be configured with the applica-
tions to monitor, the Redis attributes to display and
plot, and the commands/parameters to send (Fig. 13).

• m1ExecGui to execute scripts based on sequences of
commands.

• m1MonitorGui to monitor M1LCS devices.
• m1SegmaintenaceGui to follow up segments mainte-

nance operations (Fig. 14).

Figure 13: m1StatusGui

Figure 14: m1SegmaintenanceGui.

Simulators
Since the final number of devices, network switches, and

PLCs will be available only during integration at the obser-
vatory, quite some effort was invested in the development
of simulators and testing tools to be able to properly verify
the M1LCS SW. To validate the performance requirements,
the following tools have been developed:
• Traffic Generator: this application is able to generate

the full (or a subset of) M1 ES/PACT/WH UDP traffic
including measurements, announce, telemetry, and
performance packets within the time constraint of the

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOBPP04

Software Technology Evolution
MOBPP04

43

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

real devices. It uses 4 ports of a 10G NICs to send the
packets. The content of the packets is configurable.

• Figure Loop: this application is a simple implementa-
tion of LSV Figure Loop control algorithm.

To verify interfaces and for scalability tests, the follow-
ing simulators have been developed:
• ES, PACT, WH device simulators used to test the in-

terface between M1LCS and the FE devices.
• PLC simulator to simulate the 132 PLCs.

For the simulation of the network switches the SNMP
Simulator tool [21] has been adopted.

DEPLOYMENT
M1LCS SW can be deployed on one or more servers de-

pending on the performance to be achieved. Since the low
latency interface between M1LCS and M1LSV is imple-
mented via shared memory, enough server resources have
to be reserved to M1LSV to execute the control algorithm.

We tested different deployment scenarios: some based
on servers equipped with dual CPU Intel Xeon E5-2699
2.3GHz, for a total of 2 NUMA nodes and 36 cores, and
others based on servers with dual CPU AMD EPYC 7551
2.0GHz, for a total of 64 cores and 8 NUMA nodes [22].
All servers have dedicated 10G NIC(s) to connect to the
deterministic network. The best results were obtained us-
ing the AMD EPYC running on CPU-0 the M1LCS
FeMeasMon and FeRefMgr applications and on CPU-1 the
M1LSV Figure Loop control algorithm simulator. The
eight cores associated to NUMA node 0 were left to the OS
and to low priority threads while all the other cores were
isolated. FeMeasMon was running the receiving threads on
cores associated to NUMA nodes 1 and 2. FeRefMgr was
running the sender threads on NUMA node 3. We used two
10G NICs installed on the PCIe slot connected to NUMA
node 1 and 2 respectively: one to receive the ES measure-
ments, the other to receive the PACT measurements and
send PACT references. The Figure Loop simulator was
configured to use eight worker threads to run in parallel
matrix-vector multiplications plus one thread to combine
the partial results. Each worker thread was running alone
on one AMD EPYC die (also called zeppelin) to increase
memory bandwidth (i.e. less conflicts when accessing the
memory channels). Using only one core every four may
seems a waste of resources but it increased dramatically the
performance.

Currently, the M1LCS SW is deployed on VMs for local
development and in M1 laboratory to verify performance,
scalability, and interfaces. The lab deployment consists of
a SegC cabinet with 7 WH and 7 ES controllers, PLC/PSU,
SegC network switch, a SecD switch, a CR switch, and five
servers running M1LCS applications. In addition, one
server is dedicated to the Traffic Generator simulator and
one PC with a 10G Myricom is used as a sniffer. Servers in
the lab are provided with PTP time reference signal.

It is foreseen to add an additional deployment setup to
control a small scale M1 made of seven segments fully
equipped with ES/PACT/WH sensors and actuators con-
nected to a dedicated SegC cabinet.

TESTING AND RESULTS

Testing Strategies
M1LCS SW is integrated with the ESO ELT continuous

integration (CI) infrastructure based on Jenkins. CI is trig-
gered every time a modification is archived and it executes
691 unit tests and 127 integration tests. For the PLC code
a special unit test infrastructure has been developed in-
house.

In addition to the CI tests, system validation tests, to be
executed in M1 laboratory, have been developed to verify
performance, interfaces, and scalability. They use the traf-
fic generator and Figure Loop simulator to measure control
loop latencies, and the ES/PACT/WH simulators to test
scalability and interfaces.

In parallel to the testing activities carried out at ESO, the
M1LCS SW is verified and validated also by an independ-
ent contractor.

Performance
Both Intel and AMD servers comply with the 2ms spec.

Using the AMD Epyc processor, sensor’s measurements
can be acquired in ~1.4ms, new references can be com-
puted in <0.8ms and sent to the actuators in <0.8ms. With
respect to the Intel, the AMD gains 1.2ms on the computa-
tion stage while it loses 0.4ms in acquisition (Fig. 15). CPU
cores load is always below 50% for AMD, and below 60%
for the Intel

.

Figure 15: Intel/AMD comparison of latency for each stage
of the Figure Loop simulation.

The jitter on SYNC UDP packet measured by the sniffer
is ±12µs, close to the ±10µs spec.

FDIR most demanding algorithm to detect wrong ES
measurements can run on one isolated core/single thread in
11ms which is well below the 1s requirement and can be
improved by scaling on more cores/threads.

CONCLUSIONS
In this paper we have summarized the main characteris-

tics of the M1LCS SW and the results obtained so far on
two type of servers. The achieved performance confirms
the theoretical analysis on the Figure Loop control algo-
rithm complexity: the problem is limited by the memory
bandwidth and not by the CPU. The AMD solution has

0

1

2

3

Get
Measurement

Computation Send references

Ti
m

e
(m

s)

Figure Loop Simulation

Intel AMD

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOBPP04

MOBPP04
44

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

been selected since it provides a flexible NUMA architec-
ture. This flexibility can be used to further improve the sys-
tem performance.

The SW architecture based on the estimator-controller-
adapter pattern and the goal monitoring approach for FDIR
showed to be robust and fulfilling the requirements. It was
flexible enough to accommodate unforeseen implementa-
tion problems and requirement modifications.

REFERENCES
[1] M. Dimmler, J. Marrero, S. Leveque, P. Barriga, B. Sedghi,

and M. Mueller,“E-ELT M1 Test Facility”, in Proc. SPIE
Ground-based and Airborne Telescopes IV, Amsterdam,
Netherlands, Sep. 2012, vol. 8444, pp. 692-706.
doi:10.1117/12.926146

[2] M. Dimmler et al., “Getting ready for serial production of
the segmented 39-meter ELT primary: status, challenges and
strategies”, in Proc. SPIE Ground-based and Airborne Tel-
escopes VII, Austin, Texas, USA, Jul. 2018, vol. 10700, pp.
1325-1344. doi:/10.1117/12.2312073

[3] Precision clock synchronization protocol for networked
measurement and control systems, IEEE 1588-2008.

[4] Network time protocol, RFC 1305, version 3.

[5] M. D. Ingham et al., “Engineering complex embedded sys-
tems with state analysis and the mission data system”, in
Journal of Aerospace Computing, Information, and Com-
munication, vol. 2, Dec. 2005, pp.507-536.
doi:10.2514/1.15265

[6] F. Pellegrin and C. Rosenquist, “The ELT linux development
environment”, in Proc. 16th Int. Conf. on Accelerator and
Large Experimental Control Systems (ICALEPCS’17), Bar-
celona, Spain, Oct .2017, pp. 1125-1130
doi:10.18429/JACoW-ICALEPCS2017-THBPL05

[7] Boost.Asio, https://www.boost.org/doc/libs

[8] AZMQ, https://github.com/zeromq/azmq

[9] ZeroMQ, https://zeromq.org

[10] SCXML, http://www.w3c.org/TR/scxml

[11] L. Andolfato, G. Chiozzi, N. Migliorini, and C. Morales, “A
platform independent framework for statecharts Code Gen-
eration”, in Proc. 13th Int. Conf. on Accelerator and Large
Experimental Control Systems (ICALEPCS'11), Grenoble,
France, Oct. 2011, paper WEAAULT03, pp. 614-617.

[12] Cookiecutter, http://cookiecutter.readthedocs.io

[13] Redis, https://redis.io

[14] Introduction to Intel Ethernet Flow Director and Memcached
Performance, White Paper,
https://www.intel.com/content/dam/www/pub-
lic/us/en/documents/white-papers/intel-
ethernet-flow-director.pdf

[15] IRQ affinity, https://www.kernel.org/doc/Docu-
mentation/IRQ-affinity.txt

[16] PACKET_FANOUT, http://man7.org/linux/man-
pages/man7/packet.7.html

[17] J. Argomedo, N. Kornweibel, T. Grudzien, M. Dimmler,
L. Andolfato, and P. BarrigJ. Argomedo, ”Prototyping the
E-ELT M1 local control system communication infrastruc-
ture” in Proc. SPIE, Software and Cyberinfrastructure for
Astronomy IV, Edinburgh, UK, Aug. 2016. Vol. 9913, pp.
635—644. doi:10.1117/12.2232817

[18] D. Harel, “Statecharts: A visual formalism for complex sys-
tems”, Journal Science of Computer Programming, vol. 8,
no. 3, pp. 231-274, 1987.

[19] TwinCAT, https://www.beckhoff.com

[20] PySide2, https://pypi.org/project/PySide2

[21] SNMPSimulator,
http://github.com/etingof/snmpsim

[22] Advance Micro Devices, “NUMA Topology for AMD
EPYC Naples Family Processors”, May 2018.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOBPP04

Software Technology Evolution
MOBPP04

45

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

