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Abstract 
Control systems require several, core services for work 

coordination and everyday operation. One such example is 
Directory Service, which is a central registry of all access 
points and their physical location in the network. Another 
example is Authentication Service, which verifies caller’s 
identity and issues a signed token, which represents the 
caller in the distributed communication. Both cases are real 
life examples of middleware services, which have to be al-
ways available and scalable. The paper discusses the de-
sign decisions and technical background behind these two 
central services used at CERN. Both services were de-
signed using the latest technology standards, namely 
Spring Boot and REST. Moreover, they had to comply with 
demanding requirements for fault tolerance and scalability. 
Therefore, additional extensions were necessary, as distrib-
uted in-memory cache (Infinispan), or Oracle database mir-
roring using H2 database. Additionally, the paper will ex-
plain the tradeoffs of different approaches providing high-
availability features and lessons learnt from operational us-
age.  

INTRODUCTION 
The potential for rapid growth of controls systems im-

plies that every service has to be built to scale nearly in-
stantly in response to growing requirements. CERN con-
trols services are required to implement a high level of re-
liability, agility, and scale expected of modern computer 
systems.  

High availability is a quality that aims to increase the 
time a service is available and it refers to systems that are 
durable and able to operate continuously without failure for 
a long time. It is generally achieved by scalability, failover 
and monitoring. 

Two important CERN controls services, namely Authen-
tication Service and Directory Service are examples of cen-
tral, core services, which have to be always available, even 
during scheduled infrastructure upgrades or unexpected 
failures of dependent services. Both services are used in 
this paper to illustrate different architectural and design 
choices aiming at providing highly available, fault tolerant 
architecture, satisfying service requirements. 

Authentication Service 
Authentication Service (AS), at CERN part of the RBAC 

[1, 2] infrastructure, is a central authority, which verifies 
caller’s identity, be it a human or an application, and issues 
a signed token, which represents the caller in the distrib-
uted communication. Users token holds several pieces of 

information, which are necessary to obtain access to pro-
tected resources, including: username, account type, list of 
roles, IP address and location name. AS provides several 
different types of authentication: explicit (username and 
password), location (trusted hosts by IP address), Ker-
beros [3] and SSO (SAML based Single-Sign On). This is 
made possible by aggregating different authentication 
mechanisms available at CERN and providing a common 
REST API [4] to all users. Figure 1 depicts the service ar-
chitecture: 

 

Figure 1: Authentication Service architecture. 

CERN’s controls middleware framework RDA3 [5] in-
tegrates with AS to provide security facilities (authentica-
tion and authorization) for RDA3 clients and servers. 

Directory Service 
Directory Service (DS) is a central registry of all access 

points in the distributed control system (Fig. 2). It provides 
up-to-date information about the actual physical location 
of a device server in the network. This is possible, because 
each device server has to register its current location during 
the start-up phase. Additionally, DS resolves logical device 
names to actual device servers and returns the location in-
formation to the client. Thanks to this, high-level applica-
tions don’t need to know any information related to a de-
vice server; only unique device name is sufficient to initiate 
communication. 

The RDA3 communication stack depends on DS for 
server’s binding registration, device to server resolution 
and server’s location and device lookup queries. 
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Figure 2: Directory Service architecture. 

DESIGN FOR HIGH AVAILABILITY 

Performance 
Performance means system throughput under a given 

workload for a specific time frame. It is an ongoing process 
and not an end result. DS and AS have been designed tak-
ing into consideration scalability and reliability of hard-
ware, software and network. Their requirements oblige to 
handle hundreds of requests per second and to accommo-
date specific business requirements. 

Communication Style 
Communication between services and execution flow is 

a fundamental decision for a distributed system. It can be 
synchronous or asynchronous in nature. Both approaches 
have their trade-offs and strengths. 

Asynchronous communication allows for better use of 
available system resources (CPU, threads) and is indispen-
sable for scalable systems as it allows to serve more con-
current requests with less resources.   

Synchronous communication is closely associated with 
HTTP protocol and REST API. It is used for both AS and 
DS REST clients. Synchronous communication leaves up-
stream services susceptible to cascading failure in a micro-
services architecture. If downstream services fail or even 
worse, take too long to respond back, it might lead to client 
breakdown. For DS, although all communication is over 
HTTP/REST, it is necessary to use asynchronous server-
side processing for registering new device server’s bind-
ings to avoid the failure of application requests due to the 
breakdown of one DS node. For AS, all update operations 
on the database are done asynchronously to not block ap-
plication threads in case of database failures.  

Caching Architectures 
Caching is a mandatory requirement for building scala-

ble, resilient distributed systems. As data and applications 
continue to get larger and faster, the data has to be available 
instantly to users. Even with a relatively fast storage layer, 
loading big amounts of data can take significantly more 
time than the desired time to serve a user request. 

DS requires a great deal of data to be loaded into 
memory in order to respond to user calls as fast as possible. 
Depending on the need, the data can be cached in many 
different ways.  

A local cache is the simplest approach, when the data is 
stored locally and its changes are not replicated. Another 
option is a remote, central cache available to many users. 
The major advantage of a centralized cache is that once the 
data is loaded into the common data store it can be queried 
by many clients. 

In Tables 1 and 2, all evaluated cache products are sum-
marized together with their main features. 

Table 1: Comparison of Distributed Caches, Part 1 

 Infinispan Ignite 

Transport JGroups 
(TCP/UDP) 

TCP 

Storage memory, db, file memory, db, file 

Deployment in-process in-process, server 

Strategy replication, 
distributed 

replication, 
distributed 

Client API Java, C++, Python Java, C++, Python 

Table 2: Comparison of Distributed Caches, Part 2 

 Hazelcast EhCache Redis 

Transport UDP, mul-
ticast 

RMI, JMS, 
JGroups 
(TCP/UDP) 

TCP 

Storage memory, 
db 

memory, 
file 

memory, 
file 

Deployment in-process in-process, 
server 

server 

Strategy distributed replication, 
distributed 

replication 

Client API Java, C++, 
Python 

Java Java, C++, 
Python 

For DS the chosen solution is an in-process cache com-
bined by the Red Hat Infinispan cluster [6]. Its data is fully 
replicated; therefore, every DS node has quick access to the 
whole data set and all reads are always local. In the distrib-
uted cache approach, changes are replicated to a fixed num-
ber of nodes and reads request the value from at least one 
of the owner nodes in the cluster. 

On top of mentioned aspects, we differ also client-side 
and server-side caching. Client-side approach can be ob-
served with most web browsers and has the benefit of re-
ducing network latency and remote storage I/O. It also pro-
tects a server from being overloaded from client requests.  

Server-side caching on the other hand is by far the most 
reliable and fastest method of caching available. It is useful 
for high volume transactions that can be kept secure. It also 
provides the highest degree of control over invalidation. In 
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DS, both client-side (included in the client API library) and 
server-side caching are employed.  

Another important aspect that has to be considered is the 
expiration policy for cached data. A solution implemented 
in DS is a periodic refreshing of the whole data set. As an 
alternative strategy, a time to live (TTL) on each record can 
be set. 

Data Replication 
When the data set size is too large or it may grow with 

an unpredictable rate, using a distributed, fully replicated 
in-memory cache is not an optimal approach. The main 
problem is that the whole data set might not fit into the 
available system memory and moreover cache refresh op-
erations may incur heavy network traffic due to significant 
data size, which has to be transported to all cluster nodes. 

This scenario is the case for AS where the configuration 
data needed for operation might have very big size (>1GB). 
Moreover, the data can be frequently changed by users and 
therefore AS should always use the latest values. There-
fore, a periodic upload of the whole data set into a common 
cache, as in DS, is not an appropriate strategy as the cached 
data would immediately become stale and that would cause 
wrong results to user’s requests. However, in order to sur-
vive possible, temporary unavailability of the master data-
base it was decided to investigate full data replication 
mechanism into a local database instance, fully managed 
by each AS node. 

Table 3: Comparison of Embedded Databases, Part 1 

 H2 HSQLDB 

Storage memory, file memory, file 

Deployment in-process, 
server 

in-process, 
server 

Oracle syntax 
similarity 

high exact 

SQL  
support 

procedure,  trig-
ger, sequence 

procedure,  trig-
ger 

Table 4: Comparison of Embedded Databases, Part 2 

 SQLite Derby 

Storage memory, file memory, file 

Deployment in-process in-process, 
server 

Oracle syntax 
similarity 

low medium 

SQL  
support 

low procedure,  trig-
ger, sequence 

Finally, after an evaluation of several different products 
H2 database [7] was chosen to implement a local, embed-
ded database mirror (Table 3). It was configured to run as 
a private in-memory database, with file-based storage. 

Every 15 minutes a new upload of the full data set is per-
formed to update the local H2 instance on each AS node. 
In operation, AS by default accesses the master database, 
however when it becomes unavailable it switches immedi-
ately to the local H2 instance. Therefore, there is no failure 
reported to end user as data is always available. Evidently, 
locally replicated data could be outdated by a maximum of 
15 minutes, but it is acceptable in view of achieving better 
system availability. 

Scalability 
While performance is a measure of how efficiently an 

application processes the requests, scalability is related to 
how to divide and conquer the processing of incoming 
tasks. Infinispan that has been chosen for implementing the 
cache layer allows to discover neighboring instances on the 
same local network and forms a cluster of multiple nodes. 
Therefore, DS is able to scale horizontally and can be ex-
panded at any time with additional nodes with identical 
functionality, redistributing the load among all of them. 
Similarly, AS distributes the load among all available 
nodes. However, since every AS node has a direct access 
to the datastore, additional nodes increase load on the da-
tabase. 

Load Balancing 
Load balancing allows for distributing incoming re-

quests among all healthy cluster nodes, so no single node 
gets overloaded. It also provides an ability to self-heal after 
a particular node becomes again available, without any ser-
vice downtime for end users. Load balancing models can 
be divided into server-side (Fig. 3) and client-side (Fig. 4). 

Popular choices for server-side load balancing include 
HAProxy [8], Nginx [9] and Amazon’s Elastic Load Bal-
ancer (ELB) [10]. 

 

Figure 3: Server-side load balancer. 

Unfortunately, using a single central load balancer for an 
entire service ecosystem can be a single point of failure, 
leading to a failure of the entire service. Also, this single 
load balancer can very quickly become a major bottleneck, 
since all traffic to every microservice has to pass through 
it. Another possibility is to use clustered multiple load-bal-
ancers, however, what has to be considered is that it comes 
with a lot of additional configuration overhead. Another is-
sue with central load balancers is scalability. Thus, for AS 
and DS it has been decided to use client-side load balanc-
ing.  
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There are multiple client-side solutions available on the 
market. For the new DS Java client, the Netflix Ribbon [11] 
product has been chosen. In this approach, load balancing 
is fully distributed, with each client directly responsible for 
routing requests to an available microservice (Fig. 4). 

 

Figure 4: Client-side, in-process load balancer. 

It simplifies service management and automatically 
scales the system in accordance with the number of availa-
ble instances and eliminates all single points of failure. 

On the other hand, AS client uses a custom in-house 
load-balancer, but it is planned to upgrade it to Netflix Rib-
bon as well. For C++ clients a custom solution based on 
libcurl [12] was implemented with a similar functionality. 

Redundancy 
It is important to build enough redundancy into the sys-

tem to ensure that the service does not fail. To improve the 
availability, it is essential to eliminate all single points of 
failure and create, using a server load balancer, clusters in 
which all nodes are stateless and completely equivalent. A 
successful microservice implementation has redundant 
copies of each service. 

There are some consequences from replicated nodes ap-
proach to managing data. Replication causes redundancy 
across the data stores, as the same item of data is appearing 
in multiple places. However, this allows the system to with-
stand errors and crashes in individual service nodes and 
simplifies the architecture. 

Both AS and DS clusters, are organized as replicated 
load-balanced services, where every server node is identi-
cal to every other node and all are capable of supporting 
the traffic. This approach has a major impact on a general 
service reliability in case of unavailability of some server 
nodes, e.g. due to: HW failure, OS upgrade, etc. 

Failover 
It is important to design critical services in a fail-safe 

manner. In both AS and DS services fallback mechanisms 
are used to fail gracefully when external services (e.g. da-
tabase, LDAP [13]) are not available. 

Health checks can help us detect failed hosts so the load 
balancer can stop requests to them. A host can fail for many 
reasons, such as simply being overloaded, the server pro-
cess may have stopped running, it might have a failed de-
ployment, or broken code to list a few reasons. We distin-
guish between passive and active health checks. 

In active health checks, the load balancer periodically 
“probes” upstream servers by sending a special health 
check request. If the response is not received back from the 
upstream server, or if the response is not as expected, the 
load balancer disables traffic to the server. In passive health 
checks, the load balancer monitors real requests as they 
pass through. If the number of failed requests exceeds a 
threshold, it marks the host as unhealthy. In AS and DS 
there are passive health checks with detecting the un-
healthy server nodes. For AS and DS Java clients it was 
implemented using Netflix Ribbon, similarly as for load 
balancing mechanism. For C++ clients a custom solution 
based on libcurl was implemented with similar functional-
ity. If the request sent from a client fails, it is automatically 
re-sent to another server nodes, and the previous one is 
temporarily banned from further requests. This reduces the 
load on the unhealthy node, and prevents resource exhaus-
tion in the client. 

Monitoring and Logging 
One of the biggest challenges due to the very distributed 

nature of microservices deployment is monitoring and log-
ging of individual service nodes. Since both AS and DS are 
Java based applications, JMX [14] was chosen to imple-
ment and expose service metrics. Additionally, many use-
ful JMX metrics are already provided by Java platform and 
dependent 3rd party components: Spring [15], Infinispan, 
H2. Next, they are exposed and ingested by a Prome-
theus [16] server instance, which records them in a time-
series datastore. Prometheus allows for easy querying of 
stored metrics and creation of alerts for detecting system 
anomalies. This proved to be very efficient in both produc-
tion and test environments to be able to spot errors before 
they affect users. Next step was to configure monitoring 
dashboards in Grafana [17] based on Prometheus data 
source. Visually appealing dashboards in Grafana help to 
get an overview of the services’ health and allow for brows-
ing historical data, very much needed for issue trouble-
shooting.  

Without monitoring in place, an operation team may run 
into trouble managing a large-scale microservice. An effi-
cient monitoring helps to understand the behavior of a sys-
tem from a user experience point of view. This will ensure 
that the end-to-end behavior is consistent and is in line with 
what is expected by the clients. 

CONCLUSIONS 
Both services Authentication Service and Directory Ser-

vice have successfully passed many testing phases, includ-
ing: integration, performance and stability testing. Before 
the final production deployment, the test setup ran contin-
uously for several days without any problems proving that 
the new, highly available system architecture can handle 
reliably twice the production load. Finally, both services 
were successfully commissioned and deployed in opera-
tion: Authentication Service in 2017 and Directory Service 
in 2018. 
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