
FAULT TOLERANT, SCALABLE MIDDLEWARE SERVICES BASED ON
SPRING BOOT, REST, H2 AND INFINISPAN

W. Sliwinski*, K. Kaczkowski†, W. Zadlo††, CERN, Geneva, Switzerland

Abstract
Control systems require several, core services for work

coordination and everyday operation. One such example is
Directory Service, which is a central registry of all access
points and their physical location in the network. Another
example is Authentication Service, which verifies caller’s
identity and issues a signed token, which represents the
caller in the distributed communication. Both cases are real
life examples of middleware services, which have to be al-
ways available and scalable. The paper discusses the de-
sign decisions and technical background behind these two
central services used at CERN. Both services were de-
signed using the latest technology standards, namely
Spring Boot and REST. Moreover, they had to comply with
demanding requirements for fault tolerance and scalability.
Therefore, additional extensions were necessary, as distrib-
uted in-memory cache (Infinispan), or Oracle database mir-
roring using H2 database. Additionally, the paper will ex-
plain the tradeoffs of different approaches providing high-
availability features and lessons learnt from operational us-
age.

INTRODUCTION
The potential for rapid growth of controls systems im-

plies that every service has to be built to scale nearly in-
stantly in response to growing requirements. CERN con-
trols services are required to implement a high level of re-
liability, agility, and scale expected of modern computer
systems.

High availability is a quality that aims to increase the
time a service is available and it refers to systems that are
durable and able to operate continuously without failure for
a long time. It is generally achieved by scalability, failover
and monitoring.

Two important CERN controls services, namely Authen-
tication Service and Directory Service are examples of cen-
tral, core services, which have to be always available, even
during scheduled infrastructure upgrades or unexpected
failures of dependent services. Both services are used in
this paper to illustrate different architectural and design
choices aiming at providing highly available, fault tolerant
architecture, satisfying service requirements.

Authentication Service
Authentication Service (AS), at CERN part of the RBAC

[1, 2] infrastructure, is a central authority, which verifies
caller’s identity, be it a human or an application, and issues
a signed token, which represents the caller in the distrib-
uted communication. Users token holds several pieces of

information, which are necessary to obtain access to pro-
tected resources, including: username, account type, list of
roles, IP address and location name. AS provides several
different types of authentication: explicit (username and
password), location (trusted hosts by IP address), Ker-
beros [3] and SSO (SAML based Single-Sign On). This is
made possible by aggregating different authentication
mechanisms available at CERN and providing a common
REST API [4] to all users. Figure 1 depicts the service ar-
chitecture:

Figure 1: Authentication Service architecture.

CERN’s controls middleware framework RDA3 [5] in-
tegrates with AS to provide security facilities (authentica-
tion and authorization) for RDA3 clients and servers.

Directory Service
Directory Service (DS) is a central registry of all access

points in the distributed control system (Fig. 2). It provides
up-to-date information about the actual physical location
of a device server in the network. This is possible, because
each device server has to register its current location during
the start-up phase. Additionally, DS resolves logical device
names to actual device servers and returns the location in-
formation to the client. Thanks to this, high-level applica-
tions don’t need to know any information related to a de-
vice server; only unique device name is sufficient to initiate
communication.

The RDA3 communication stack depends on DS for
server’s binding registration, device to server resolution
and server’s location and device lookup queries.

** Wojciech.Sliwinski@cern.ch
† Konrad.Kaczkowski@cern.ch
†† Wojciech.Zadlo@cern.ch

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOBPP03

Software Technology Evolution
MOBPP03

33

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 2: Directory Service architecture.

DESIGN FOR HIGH AVAILABILITY

Performance
Performance means system throughput under a given

workload for a specific time frame. It is an ongoing process
and not an end result. DS and AS have been designed tak-
ing into consideration scalability and reliability of hard-
ware, software and network. Their requirements oblige to
handle hundreds of requests per second and to accommo-
date specific business requirements.

Communication Style
Communication between services and execution flow is

a fundamental decision for a distributed system. It can be
synchronous or asynchronous in nature. Both approaches
have their trade-offs and strengths.

Asynchronous communication allows for better use of
available system resources (CPU, threads) and is indispen-
sable for scalable systems as it allows to serve more con-
current requests with less resources.

Synchronous communication is closely associated with
HTTP protocol and REST API. It is used for both AS and
DS REST clients. Synchronous communication leaves up-
stream services susceptible to cascading failure in a micro-
services architecture. If downstream services fail or even
worse, take too long to respond back, it might lead to client
breakdown. For DS, although all communication is over
HTTP/REST, it is necessary to use asynchronous server-
side processing for registering new device server’s bind-
ings to avoid the failure of application requests due to the
breakdown of one DS node. For AS, all update operations
on the database are done asynchronously to not block ap-
plication threads in case of database failures.

Caching Architectures
Caching is a mandatory requirement for building scala-

ble, resilient distributed systems. As data and applications
continue to get larger and faster, the data has to be available
instantly to users. Even with a relatively fast storage layer,
loading big amounts of data can take significantly more
time than the desired time to serve a user request.

DS requires a great deal of data to be loaded into
memory in order to respond to user calls as fast as possible.
Depending on the need, the data can be cached in many
different ways.

A local cache is the simplest approach, when the data is
stored locally and its changes are not replicated. Another
option is a remote, central cache available to many users.
The major advantage of a centralized cache is that once the
data is loaded into the common data store it can be queried
by many clients.

In Tables 1 and 2, all evaluated cache products are sum-
marized together with their main features.

Table 1: Comparison of Distributed Caches, Part 1

 Infinispan Ignite

Transport JGroups
(TCP/UDP)

TCP

Storage memory, db, file memory, db, file

Deployment in-process in-process, server

Strategy replication,
distributed

replication,
distributed

Client API Java, C++, Python Java, C++, Python

Table 2: Comparison of Distributed Caches, Part 2

 Hazelcast EhCache Redis

Transport UDP, mul-
ticast

RMI, JMS,
JGroups
(TCP/UDP)

TCP

Storage memory,
db

memory,
file

memory,
file

Deployment in-process in-process,
server

server

Strategy distributed replication,
distributed

replication

Client API Java, C++,
Python

Java Java, C++,
Python

For DS the chosen solution is an in-process cache com-
bined by the Red Hat Infinispan cluster [6]. Its data is fully
replicated; therefore, every DS node has quick access to the
whole data set and all reads are always local. In the distrib-
uted cache approach, changes are replicated to a fixed num-
ber of nodes and reads request the value from at least one
of the owner nodes in the cluster.

On top of mentioned aspects, we differ also client-side
and server-side caching. Client-side approach can be ob-
served with most web browsers and has the benefit of re-
ducing network latency and remote storage I/O. It also pro-
tects a server from being overloaded from client requests.

Server-side caching on the other hand is by far the most
reliable and fastest method of caching available. It is useful
for high volume transactions that can be kept secure. It also
provides the highest degree of control over invalidation. In

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOBPP03

MOBPP03
34

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

DS, both client-side (included in the client API library) and
server-side caching are employed.

Another important aspect that has to be considered is the
expiration policy for cached data. A solution implemented
in DS is a periodic refreshing of the whole data set. As an
alternative strategy, a time to live (TTL) on each record can
be set.

Data Replication
When the data set size is too large or it may grow with

an unpredictable rate, using a distributed, fully replicated
in-memory cache is not an optimal approach. The main
problem is that the whole data set might not fit into the
available system memory and moreover cache refresh op-
erations may incur heavy network traffic due to significant
data size, which has to be transported to all cluster nodes.

This scenario is the case for AS where the configuration
data needed for operation might have very big size (>1GB).
Moreover, the data can be frequently changed by users and
therefore AS should always use the latest values. There-
fore, a periodic upload of the whole data set into a common
cache, as in DS, is not an appropriate strategy as the cached
data would immediately become stale and that would cause
wrong results to user’s requests. However, in order to sur-
vive possible, temporary unavailability of the master data-
base it was decided to investigate full data replication
mechanism into a local database instance, fully managed
by each AS node.

Table 3: Comparison of Embedded Databases, Part 1

 H2 HSQLDB

Storage memory, file memory, file

Deployment in-process,
server

in-process,
server

Oracle syntax
similarity

high exact

SQL
support

procedure, trig-
ger, sequence

procedure, trig-
ger

Table 4: Comparison of Embedded Databases, Part 2

 SQLite Derby

Storage memory, file memory, file

Deployment in-process in-process,
server

Oracle syntax
similarity

low medium

SQL
support

low procedure, trig-
ger, sequence

Finally, after an evaluation of several different products
H2 database [7] was chosen to implement a local, embed-
ded database mirror (Table 3). It was configured to run as
a private in-memory database, with file-based storage.

Every 15 minutes a new upload of the full data set is per-
formed to update the local H2 instance on each AS node.
In operation, AS by default accesses the master database,
however when it becomes unavailable it switches immedi-
ately to the local H2 instance. Therefore, there is no failure
reported to end user as data is always available. Evidently,
locally replicated data could be outdated by a maximum of
15 minutes, but it is acceptable in view of achieving better
system availability.

Scalability
While performance is a measure of how efficiently an

application processes the requests, scalability is related to
how to divide and conquer the processing of incoming
tasks. Infinispan that has been chosen for implementing the
cache layer allows to discover neighboring instances on the
same local network and forms a cluster of multiple nodes.
Therefore, DS is able to scale horizontally and can be ex-
panded at any time with additional nodes with identical
functionality, redistributing the load among all of them.
Similarly, AS distributes the load among all available
nodes. However, since every AS node has a direct access
to the datastore, additional nodes increase load on the da-
tabase.

Load Balancing
Load balancing allows for distributing incoming re-

quests among all healthy cluster nodes, so no single node
gets overloaded. It also provides an ability to self-heal after
a particular node becomes again available, without any ser-
vice downtime for end users. Load balancing models can
be divided into server-side (Fig. 3) and client-side (Fig. 4).

Popular choices for server-side load balancing include
HAProxy [8], Nginx [9] and Amazon’s Elastic Load Bal-
ancer (ELB) [10].

Figure 3: Server-side load balancer.

Unfortunately, using a single central load balancer for an
entire service ecosystem can be a single point of failure,
leading to a failure of the entire service. Also, this single
load balancer can very quickly become a major bottleneck,
since all traffic to every microservice has to pass through
it. Another possibility is to use clustered multiple load-bal-
ancers, however, what has to be considered is that it comes
with a lot of additional configuration overhead. Another is-
sue with central load balancers is scalability. Thus, for AS
and DS it has been decided to use client-side load balanc-
ing.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOBPP03

Software Technology Evolution
MOBPP03

35

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

There are multiple client-side solutions available on the
market. For the new DS Java client, the Netflix Ribbon [11]
product has been chosen. In this approach, load balancing
is fully distributed, with each client directly responsible for
routing requests to an available microservice (Fig. 4).

Figure 4: Client-side, in-process load balancer.

It simplifies service management and automatically
scales the system in accordance with the number of availa-
ble instances and eliminates all single points of failure.

On the other hand, AS client uses a custom in-house
load-balancer, but it is planned to upgrade it to Netflix Rib-
bon as well. For C++ clients a custom solution based on
libcurl [12] was implemented with a similar functionality.

Redundancy
It is important to build enough redundancy into the sys-

tem to ensure that the service does not fail. To improve the
availability, it is essential to eliminate all single points of
failure and create, using a server load balancer, clusters in
which all nodes are stateless and completely equivalent. A
successful microservice implementation has redundant
copies of each service.

There are some consequences from replicated nodes ap-
proach to managing data. Replication causes redundancy
across the data stores, as the same item of data is appearing
in multiple places. However, this allows the system to with-
stand errors and crashes in individual service nodes and
simplifies the architecture.

Both AS and DS clusters, are organized as replicated
load-balanced services, where every server node is identi-
cal to every other node and all are capable of supporting
the traffic. This approach has a major impact on a general
service reliability in case of unavailability of some server
nodes, e.g. due to: HW failure, OS upgrade, etc.

Failover
It is important to design critical services in a fail-safe

manner. In both AS and DS services fallback mechanisms
are used to fail gracefully when external services (e.g. da-
tabase, LDAP [13]) are not available.

Health checks can help us detect failed hosts so the load
balancer can stop requests to them. A host can fail for many
reasons, such as simply being overloaded, the server pro-
cess may have stopped running, it might have a failed de-
ployment, or broken code to list a few reasons. We distin-
guish between passive and active health checks.

In active health checks, the load balancer periodically
“probes” upstream servers by sending a special health
check request. If the response is not received back from the
upstream server, or if the response is not as expected, the
load balancer disables traffic to the server. In passive health
checks, the load balancer monitors real requests as they
pass through. If the number of failed requests exceeds a
threshold, it marks the host as unhealthy. In AS and DS
there are passive health checks with detecting the un-
healthy server nodes. For AS and DS Java clients it was
implemented using Netflix Ribbon, similarly as for load
balancing mechanism. For C++ clients a custom solution
based on libcurl was implemented with similar functional-
ity. If the request sent from a client fails, it is automatically
re-sent to another server nodes, and the previous one is
temporarily banned from further requests. This reduces the
load on the unhealthy node, and prevents resource exhaus-
tion in the client.

Monitoring and Logging
One of the biggest challenges due to the very distributed

nature of microservices deployment is monitoring and log-
ging of individual service nodes. Since both AS and DS are
Java based applications, JMX [14] was chosen to imple-
ment and expose service metrics. Additionally, many use-
ful JMX metrics are already provided by Java platform and
dependent 3rd party components: Spring [15], Infinispan,
H2. Next, they are exposed and ingested by a Prome-
theus [16] server instance, which records them in a time-
series datastore. Prometheus allows for easy querying of
stored metrics and creation of alerts for detecting system
anomalies. This proved to be very efficient in both produc-
tion and test environments to be able to spot errors before
they affect users. Next step was to configure monitoring
dashboards in Grafana [17] based on Prometheus data
source. Visually appealing dashboards in Grafana help to
get an overview of the services’ health and allow for brows-
ing historical data, very much needed for issue trouble-
shooting.

Without monitoring in place, an operation team may run
into trouble managing a large-scale microservice. An effi-
cient monitoring helps to understand the behavior of a sys-
tem from a user experience point of view. This will ensure
that the end-to-end behavior is consistent and is in line with
what is expected by the clients.

CONCLUSIONS
Both services Authentication Service and Directory Ser-

vice have successfully passed many testing phases, includ-
ing: integration, performance and stability testing. Before
the final production deployment, the test setup ran contin-
uously for several days without any problems proving that
the new, highly available system architecture can handle
reliably twice the production load. Finally, both services
were successfully commissioned and deployed in opera-
tion: Authentication Service in 2017 and Directory Service
in 2018.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOBPP03

MOBPP03
36

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

REFERENCES
[1] P. Gajewski, S. R. Gysin, and K. Kostro, “Role-based au-

thorization in equipment access at CERN”, in Proc. 11th Int.
Conf. on Accelerator and Large Experimental Physics Con-
trol Systems (ICALEPCS'07), Oak Ridge, TN, USA, Oct.
2007, paper WPPB08, pp. 415-417.

[2] S. R. Gysin, C. L. Schumann, and A. D. Petrov, “User au-
thentication for role-based access control”, in Proc. 11th Int.
Conf. on Accelerator and Large Experimental Physics Con-
trol Systems (ICALEPCS'07), Oak Ridge, TN, USA, Oct.
2007, paper TPPA12, pp. 111-113.

[3] Kerberos, https://web.mit.edu/kerberos/

[4] REST, https://en.wikipedia.org/wiki/
Representational_state_transfer

[5] J. Lauener and W. Sliwinski, “How to design & implement
a modern communication middleware based on ZeroMQ”,
in Proc. 16th Int. Conf. on Accelerator and Large Experi-
mental Physics Control Systems (ICALEPCS'17), Barce-
lona, Spain, Oct. 2017, pp. 45-51. doi:10.18429/JACoW-
ICALEPCS2017-MOBPL05

[6] Infinispan, https://infinispan.org/

[7] H2, https://www.h2database.com/

[8] HAProxy, http://www.haproxy.org

[9] Nginx, https://nginx.org/en

[10] Amazon ELB,
https://aws.amazon.com/elasticloadbalancing

[11] Netflix Ribbon,
https://github.com/Netflix/ribbon

[12] libcurl, https://curl.haxx.se/libcurl

[13] LDAP, https://ldap.com

[14] JMX, https://openjdk.java.net/groups/jmx

[15] Spring Boot,
https://spring.io/projects/spring-boot

[16] Prometheus, https://prometheus.io

[17] Grafana, https://grafana.com

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOBPP03

Software Technology Evolution
MOBPP03

37

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

