
DESIGNING A CONTROL SYSTEM FOR LARGE EXPERIMENTAL
DEVICES USING WEB TECHNOLOGY
W. Zheng, Y. Wang, M. Zhang, F. Wu, N. Fu, S. Li

International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State
Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical

and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, China

Abstract
EPICS is mature in accelerator community. However,

there are efforts to improve existing control system soft-
ware like Tango and EPICS 7 mainly driven by the needs
of flexibility of the control system and the development of
computer technology. This paper presents a new way of
building a large experimental device control system using
web technology instead of EPICS toolkit. The goal is to
improve the interoperability of the control system allowing
different component in the control system to talk to each
other effortlessly. An abstraction of the control system is
made. The control system components are abstracted into
resources. The accessing of the resources is done via stand-
ard HTTP RESTful web API. human machine interface is
based on HTML and JavaScript in browsers. Web Socket
is used for event distribution. The main feature of this de-
sign is that all interfaces in the system are based on open
web standards, which are interoperable among almost all
kinds of devices. The paper also presents a software toolkit
to build this kind of control system. A control system for a
diagnostic on J-TEXT tokamak built using this toolkit will
be presented.

INTRODUCTIOIN
One key characteristic of as large experimental facility

control system is its ability to adopt and integrate new sys-
tems. As experiment advances new diagnostics or detectors
will be added to the machine. On J-TEXT currently there
are more than one system been added of modified to the
machine. Different types of subsystem are likely to be im-
plemented with different technologies. New technologies
are being integrated into those facilities frequently. Effi-
ciently integrated those new technologies into the control
system is very important. As the performance of the com-
puter and network keep advancing performance of the su-
pervisory control and data acquisition (SCADA) system is
no long the focus of the development. Instead, interopera-
bility became the priority of SCADA system. To achieve
interoperability a common language for a control system is
needed. There are various control system framework exist-
ing in big physics community, each with different charac-
teristics. For fusion community, ITER chose the Experi-
mental physics and industrial control system (EPICS) and
Channel Access protocol (CA) as the common language.
EPICS has been the common language to the accelerator
control system for decades [1]. Now chosen by ITER, it is
used by many tokamaks as well [2-5]. It is mature and well
supported by the community. But the technologies used in
tokamaks are different from those in accelerators. It is not

a straight forward job to create EPICS support for equip-
ment used in fusion experiment. EPICS CA was originally
designed for performance not interoperability recently
there are activities to improve the interoperability of EP-
ICS [6]. Later emerged control system frameworks such as
Tango uses object-oriented technique to improve interop-
erability and flexibility [7-9]. But still, it is hard to have all
the equipment in a control system supporting the control
system framework that you chose. Is it even possible to de-
velop a control system protocol that everyone supports or
it is necessary? There is a technology that is almost sup-
ported by all the devices, that’s web. Countless web APIs
have been published and consumed by all kinds of devices.
If a control system is built on web, it could be supported by
everyone effortlessly. This work was inspired by web tech-
nologies. We proposed an abstract model for control sys-
tem and a framework that uses web technology to build a
control system. It mainly addresses the interoperability is-
sue of very large control systems in large experimental fa-
cilities. The proposed framework is based on simple and
open web standard which has been used by the web indus-
try for years. Therefore, anyone can implement a system
that can be integrated into this control system with tools
already available.

This paper first briefly talked about the web technologies
and in section 3 we proposed the abstraction of the control
system. Based on that abstraction the web technologies are
introduced to make control system protocols. Then in sec-
tion 4 software framework to implement the web based
control system is described. Last an application example is
presented.

WEB TECHNOLOGIES
Web technologies is an important part of our internet life.

We keep using it every day. Web technologies not only
power the web site. Today from mobile apps, online games,
to smart sensor and IoT application, web plays a big role in
them. Many devices have embedded web servers, and
many client apps is running in browsers. They communi-
cate using HTTP. So, what is web technologies exactly?
There are different interpretations of web technologies.
What is common is web is based on HTTP, HTML, and
browser.

HTTP is an application protocol on top of TCP. It is
HTTP to be specific HTTP/1.1 is a text-based request and
response protocol. A client would send a request to a web
server and get response. The request and response are fully
in text. There are quite a lot of overhead here, but it boosts
interoperability as text provide more redundant and easier

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOBPP02

MOBPP02
28

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

interpreted information both for man and machines. HTML
is a mark language. It describes the structure of a Web page
and consists of a series of elements telling the browser how
to display the content. The web browser is a software that
fetches content using HTTP and renders the HTML con-
tent. Modern browsers also run programs like JavaScript
script to help user interacting with the content and the
server.

You can see that the web technologies and standards are
designed for interoperability [10]. These standards are
widely used by all kinds of devices and platforms. That is
why bringing web technologies to control system may im-
prove the interoperability.

A COMMON MODEL FOR CONTROL
SYSTEM

To build an interoperable control system we have to
make a common model of the control system. Everyone in
this system can be abstracted into this model and under-
stand each other conceptually. This is the basis of interop-
erability. This The control system discussed here is mainly
a SCADA system.

This common model should define the fundamental con-
cepts of a control system with enough abstractions, so it
can be adopted by all components in control system with-
out difficulty. For a control system to work, the basic ac-
tivities are getting information from other systems, know-
ing their status, and sending commands to make other sys-
tem to behave as desired. Thus, a control system can be
defined as: all the activities in the control system as “ac-
cessing resources”. There are 5 types of resources: thing,
status, configuration, method and event, in which status,
configuration, and method are the core resource.

Resource
The control system model can be illustrated in Fig. 1. It

is generalized as accessing resources between different
control system components.

Figure 1: The control system model. Everything in a con-
trol system is a resource, and every activity is accessing
resources.

Thing: A thing is a control system component. It can
have children resources such as status, config, method and
event which can be accessed by other things. A thing can
be either physical or logical, like the controller for a power
supply, or a data archiver software running on some con-
troller.

Status: A status is a property of a thing that others things
can observe but cannot change. It can only be changed by

the thing itself. Statuses of a thing indicates its current
state.

Configuration: A Configuration is a property of a thing
that it self cannot change but can only be changed by other
things. It represents the desired behavior set by other
things. Note that one cannot determine the thing’s behavior
by its configuration, instead that should be determined by
reading the status.

Method: A methods is a property of a thing. A method is
like a command, a thing should react to invoking of its
methods immediately.

Event: Event is a property that others can subscribe to,
and get notified on a certain condition. It always resulted
in an invoke of the subscriber’s method. It has to be asso-
ciated with another resource, which is the source of the
event.

Access of Resources
The model also abstracts how to access a resource. First

there are actions: get, set, invoke, subscribe/unsubscribe.
The status only support get action, since it is read-only. The
configuration support get and set actions, method only sup-
port invoke, subscribe/unsubscribe is for event. Besides ac-
tions there are inputs, which is some data passed to the re-
source when accessing it. This model uses a Uniform Re-
source Identifier (URI) to locate a resource. In this model,
a URI can explicitly locate a control system resource.
Lastly in this model, we have sample. Sample is not a re-
source. It is an immutable object. It is the result of access-
ing a resource and only valid for this access. Resource can
put various meta information in the sample like timestamp,
unit, etc. If you are familiar with web technologies, it starts
to look like web already. But that is pure coincidence, the
control system model is completed independent from any
implementations or communication protocol.

HTTP RESTFUL AS COMMUNICATION
PROTOCOL

As stated above, accessing resources is the only activi-
ties in a control system. Thus, a communication protocol
that enables the control system components to access re-
sources on other components is the key. This protocol will
be the common language of the control system, it will be
supported by every component of the control system. In-
stead of inventing our own protocol, we use the already
massively used standard: the HTTP protocol and the REST-
ful (Representational State Transfer) practice. HTTP now
has become the most common language for the internet.
Countless web APIs are published using HTTP with REST-
ful practice. With a few lines of documentation or even
with no documentations but just some poking around, one
can start to consume a RESTful API. This makes the in-
teroperability of RESTful API extremely high.

Most web APIs out there do not full comply with REST-
ful definition. But there are a few characteristics that is fol-
lowed by almost everyone. That is to locate a resource us-
ing URI, presents intended action as HTTP verbs. To be
used in the above control system model, the control system

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOBPP02

Software Technology Evolution
MOBPP02

29

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

resources are located with URL, URL is a legit URI. The
actions are mapped to HTTP verbs, the following Table 1
shows the mapping. The sample of an access to the re-
source is returned as the HTTP. Another thing in RESTful
practice is the request and response are presented in plat-
form independent plain text to be specific in JSON format,
which can be parsed by any platform. It’s even human
readable. This makes parsing the data very easy and with
some poking there is basically not compatibility issue. An-
other RESTful practice is Hypermedia. Hypermedia in
RESTful APIs responses provide information on how to in-
teract with this resource. This is essential for building au-
tonomous self-organized control system. Hypermedia can
be implemented by putting extra information in the sample.
Table 1: Control System Resource Access Action Map to
HTTP Verbs Table

Resource Access Action HTTP Verb

Get GET

Set Put

Invoke Post

Subscribe Post

In a control system, the controllers or a subsystem as

long as they have control system resources like status, con-
figuration, method and etc. will implement web servers.
So, they can expose the control system as RESTful APIs.
When they need to access control system resources on
other controllers or systems, they use a HTTP client to con-
sume those RESTful APIs hosted by other systems.

For events it always coexists with resources such as sta-
tus, configuration and method. Subscribers can start a web
socket on the same URI as the host resources. When an
event a fired a web socket package are send to the sub-
scriber. For those clients that do not have web socket easily
available, they can use a call back method.

WEB PAGES AS HUMAN MACHINE
INTERFACES

In traditional control systems, human machine interface
(HMI) are standalone applications. They are developed
separately and deployed on the operator’s console. The
HMI gets data from the network using protocols like EP-
ICS CA, and renders it on the graphic interface. This means
they are developed by tools for specific SCADA system
and often runs on limited types of platforms. Another issue
is when there are changes to the control system, the HMI
need to be modified and need to be re-deployed onto every
console. This could lead to inconsistent versioning be-
tween IOCs and HMIs.

Using web pages as HMI is a trend nowadays [11]. In
web based control system, all HMI is a web site running on
web servers. As aforementioned the controllers or other
systems implemented web servers and expose control sys-
tem resources as RESTful APIs. For HMIs those web serv-
ers not only host APIs but also web pages. The web pages

become the HMIs. The HMI can even be generated auto-
matically according to the resources on the controllers.
When a request come from a browser, it uses the URI same
as the one used by any RESTful API client, the server
would know that and return a web page to visualize the re-
source instead of a JSON object. This automatically gener-
ated HMIs are great for testing and developing a control
system, save lots of labor developing an HMI.

CONTROL SYSTEM FRAMEWORK FOR
EXPERIMENTAL DEVICES TOOLKIT

(CFET)
A toolkit like EPICS is needed to practically build con-

trol system applications. We developed the Control system
Framework for Experimental Devices Toolkit (CFET). It
includes applications and software libraries to make a con-
trol system that meet the above standards.

The CFET is implemented as .NET standard libraries
which supports major Linux distros, Mac OS and Win-
dows. The design aims to let the control system engineer to
focus on the control functions, and ignore the web com-
pletely. The developers only need to code an object called
thing, which implement the control function like interfac-
ing to IO modules or control scripts. They only need to dec-
orate some properties or method in the object with attribute
to tell CFET toolkits they are control system resources as
shown in Fig. 2. The CFET will expose them as RESTful
APIs. Inherit from Thing is not even mandatory. By inherit
from Thing, it will give this object to access CFET services
like access other thing’s resources subscribe and publish
event.

Figure 2: The pseudocode illustrating how to make a thing.
In the second method it gets data from a resource located
possibly on a remote controller using the hub object.

The core of CFET design uses the mediator design pat-
tern. All the thing access other’s resources via the hub ob-
ject, which hides all implementation of other things and
data access details away. It fetches data from one thing and
hands to the other no matter if they are on the same host or
not. It is also in charges of event distribution. Hub is the
mediator between all the things as shown in Fig. 3. REST-
ful API server and client is implemented as communication
module. You can use other protocols like EPICS CA or you
own protocol to implement the communication model as
long as it follows the control system model proposed
above.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOBPP02

MOBPP02
30

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

Figure 3: The block diagram of the CFET and the dataflow
when accessing resources between components.

For web HMIs, there are 2 types of them. In older ver-
sions of CFET, they are server generated pages. But now
the HMI is a stand along web applications that severed as
static files. The all the logic and HMI generation is done on
the client side. This has a benefit of being independent of
the server serve as it is all static files. This make the HMI
reusable amount different backend. The HMI generating
flow chart is shown in Fig. 4. First the CFET web server
find out the request is from a browser. It will redirect the
browser to the HMI location with a hash fragment indicat-
ing the resource the user indent to access. The HMI is
loaded into user’s browser and the HMI will check if the
fragment to see if it is a custom HMI, if so, it will load this
custom HMI. If not, it will try to get the resource and use
the resource to generate a suitable HMI. The HMI is com-
posed with reusable components called widgets. User can
use many widgets to build a custom HMI. It can be saved
on local storage or on the server and loaded by the server
when a user hits a specific resource.

Figure 4: The flowchart shows the CFET returns different
result based on the request when access the resources and
generate suitable HMIs based on the resources.

APPLICATIONS
Currently CFET is at its early stage, and there are not

many real-world applications of it. But We did test it on J-
TEXT in real DAQ system. The ECEI diagnostic DAQ and
data archive system is build using only CFET and nothing

else. CFET will a DAQ card thing becomes a DAQ device.
CFET with a HDF5 thing and a MongoDB manage thing
runs on a server enables user to access the archived data
and visualize the data in a browser. No matter if you are
trying to get the state of the DAQ card or the waveform
acquired by the DAQ card, it is always a RESTful API re-
quest but to the different URLs. You view those data using
the same application, the browser. The browser run the
same web page but it is populated with different widgets.
The system block diagram is show in Fig. 5. Beside that,
we also have implemented an OPC-UA thing that let others
to access PLCs using RESTful APIs and provide a web
HMI for PLCs. Later as more and more Things are devel-
oped, the CFET will become more useful.

Figure 5: The block diagram of the ECEI DAQ system. The
arrows are the data flows. The data flow inside and be-
tween CFET APP is handled by the CFET hub.

CONCLUSION
This work is aim for improve the interoperability of con-

trol systems. It does not invent ye another control system
protocol, but uses web standards for building a control sys-
tem. First this work proposed an abstract control system
model. Control system are abstracted into access to differ-
ent types of resources, such as status, configuration and
method. On top of this abstraction, HTTP RESTful API are
used to access all the resources. HTTP RESTful API may
not be as efficient as EPICS CA or DDS. The biggest ad-
vantage is that is interoperable across many platforms.
RESTful API is widely used and mature technology, this
allowed a variety of technology and devices can be inte-
grated into a control system seamlessly and effortlessly. A
control system toolkit implementing the above design
called CFET is introduced. Using it an ECEI diagnostic
DAQ system are built.

The CFET is still at its early stage. Build a large experi-
mental device with it is yet risky. However, as the experi-
ment devices get larger and sophisticated, CFET could be
an option for future devices.

ACKNOWLEDGMENTS
The authors wish to thank all the members in J-TEXT

laboratory. This work is supported by National Natural Sci-
ence Foundation of China (Nos. 11605068).

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOBPP02

Software Technology Evolution
MOBPP02

31

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

REFERENCES
[1] EPICS, Experimental Physics and Industrial Control Sys-

tem, https://epics-controls.org/
[2] A. Wallander et al., “ITER instrumentation and control—

Status and plans”, Fusion Eng. Des., vol. 85, nos. 3-4,
pp. 529-534, 2010.
doi:10.1016/j.fusengdes.2010.01.011

[3] K. H. Kim et al., “The KSTAR integrated control system
based on EPICS”, Fusion Eng. Des., vol. 81, nos. 15-17, pp.
1829-1833, 2006.
doi:10.1016/j.fusengdes.2006.04.026

[4] V. Vitale et al., “FTU toroidal magnet power supply slow
control using ITER CODAC Core System”, Fusion Eng.
Des., vol. 87, no. 12, pp. 2012-2015, 2012.
doi:10.1016/j.fusengdes.2012.05.006

[5] W. Zheng, M. Zhang, J. Zhang, G. Zhuang, Y. He, and
T. Ding, “The J-TEXT CODAC system design and imple-
mentation”, Fusion Eng. Des., vol. 89, no. 5, pp. 600-603,
2014. doi:10.1016/j.fusengdes.2014.03.048

[6] L. R. Dalesio et al., “EPICS 7 provides major enhancements
to the EPICS toolkit”, in Proc. 16th Int. Conf. on Accelera-
tor and Large Experimental Physics Control Systems
(ICALEPCS'17), Barcelona, Spain, Oct. 2017, pp. 22-26.
doi:10.18429/JACoW-ICALEPCS2017-MOBPL01

[7] A. Götz et al., “The TANGO Controls Collaboration in
2015”, in Proc. 15th Int. Conf. on Accelerator and Large
Experimental Physics Control Systems (ICALEPCS' 15),
Melbourne, Australia, 2015, pp. 585-588.
doi:10.18429/JACoW-ICALEPCS2015-WEA3O01

[8] R. Bourtembourg et al., "TANGO kernel development sta-
tus," in Proc. 16th Int. Conf. on Accelerator and Large Ex-
perimental Physics Control Systems (ICALEPCS' 17), Bar-
celona, Spain, 2017, pp. 27-33. doi:10.18429/JACoW-
ICALEPCS2017-MOBPL02

[9] T. Matsumoto, Y. Hamada, and Y. Furukawa, “MADOCA
II data collection framework for SPring-8”, in Proc. 16th
Int. Conf. on Accelerator and Large Experimental Physics
Control Systems (ICALEPCS'17), Barcelona, Spain, Oct.
2017, pp. 39-44.
doi:10.18429/JACoW-ICALEPCS2017-MOBPL04

[10] Web standards - Wikipedia,
https://en.wikipedia.org/wiki/Web_standards

[11] I. Sadeh, I. Oya, J. Schwarz, E. Pietriga, and D. Dežman,
“The graphical user interface of the operator of the Cheren-
kov Telescope Array”, in Proc. 16th Int. Conf. on Accelera-
tor and Large Experimental Physics Control Systems
(ICALEPCS' 17), Barcelona, Spain, 2017, pp. 186-191.
doi:10.18429/JACoW-ICALEPCS2017-TUBPL06

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOBPP02

MOBPP02
32

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

