
PLCverif RE-ENGINEERED: AN OPEN PLATFORM FOR
THE FORMAL ANALYSIS OF PLC PROGRAMS

D. Darvas, E. Blanco, CERN, Geneva, Switzerland
V. Molnár, Budapest University of Technology and Economics, Budapest, Hungary

Abstract
Programmable Logic Controllers (PLC) are widely used

for industrial automation in industry and at CERN. The reli-
ability of PLC software is crucial, but typically only testing
is used to validate it. Our work targets the use of formal
verification in practical ways for many years, which showed
that it can be beneficial and practically applicable to various
PLC programs. In this paper, we present PLCverif, our plat-
form for formal analysis of PLC programs which has largely
enhanced the quality of the deployed PLC software. By re-
engineering the previous internal prototype tool, we built
PLCverif to be an open, extensible platform that can be used
not only for CERN’s specific PLC programs. PLCverif is li-
censed under an open source license, allowing the interested
parties to use and extend it.

INTRODUCTION AND MOTIVATION
Programmable Logic Controllers (PLCs) are widely used

to implement process control systems and interlock systems.
The incorrect behaviour of PLCs can cause service disrup-
tions, consequently significant financial losses and injuries
too in some cases, therefore ensuring their correct behaviour
is essential.

Testing (mainly acceptance or system testing) represents
the state of the art in PLC software quality assurance. While
testing is effective in finding certain types of errors, it is
often not sufficient as the sole verification method. Testing
cannot be exhaustive, thus cannot prove the correctness of a
system. In addition, it is very difficult to test the following
types of requirements: safety (the system will never reach
an unsafe state) or invariant (formulas which shall be true
over all possible system run), as these errors may occur in
very particular cases only.

Model checking can overcome some of the weaknesses
of testing. This is a formal verification technique, which
checks the satisfaction of a formalised requirement on a
mathematical model of the system under analysis. It checks
the requirement’s satisfaction with every input combination,
with every possible execution trace. In addition, if a vio-
lation is found, typically a trace leading to the violation (a
counterexample) is provided. However, model checking is
difficult to use by PLC developers who are not experts in this
domain. The target of our work is to make model checking
more practically applicable to the software of PLC-based
systems by hiding the formal details, simplifying the user
interaction and automating the process.

Our work is not the first that targets the formal verification
of PLC programs. Among others, Arcade.PLC [1] and the
toolset developed by VTT Technical Research Centre of

Finland [2] both offer PLC program verification. However,
none of the publicly available tools was applicable to the
real-world PLC programs used at CERN, due for example,
to the lack of support for the Siemens SCL language. In
addition, we did not find possible to extend or adapt these
tools for our use cases.

Previously, we have presented a methodology for practical
model checking of PLC programs [3], a prototype tool that
implements this workflow [4], as well as real-life case stud-
ies where model checking was proven to be beneficial [5, 6].
This paper reports about our re-engineering efforts done
during the last two years and presents the final tool officially.
This development made PLCverif richer in features, more
robust and open to extensions. In addition, the paper dis-
cusses how we did benefit from PLCverif and how users can
adapt it to their use cases.

DEVELOPMENT OF PLCverif
The first plans to evaluate the use of formal verification to

PLC programs at CERN date back to 2012. After the initial
experimentation phase, the design and development of the
methodology used in PLCverif started in mid-2013. Within
a year, a prototype version of PLCverif was developed. Al-
ready during the development, PLCverif was used to analyse
parts of systems in production.

This prototype version was sufficient for our internal use
cases. However, to make PLCverif more generally appli-
cable, it had to be more robust, more generic and more
extensible. To obtain the resources needed for this addi-
tional development, a CERN Knowledge Transfer Fund was
requested and awarded in 2016. The proposed two-year-
long re-engineering project was selected to be funded in
mid-2016 [7]. The development project started in June 2017
and ended in May 2019. During that time, PLCverif was
rebuilt from scratch, taking the previous experiences and
knowledge into account.

The goal of this re-engineering work was to make
PLCverif usable by any automation engineer at CERN and
other interested parties outside the organisation.

PLCverif FOR USERS
This section discusses the principal use case of PLCverif

from the users’ point of view.

Verification Workflow
Out of the box, PLCverif offers a model checking work-

flow for the analysis of PLC programs. The verification
workflow is shown in Figure 1 and it has the following main
steps:

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOBPP01

Software Technology Evolution
MOBPP01

21

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



PL
C

ve
ri

f

PLC program
parser

Requirement
representation

XXXXXXCFA reductions

External model
checking

XXXXXXReporting

PLC program

User requirement

Formal representation (CFA)

Verification problem
(CFA + TL requirement)

Reduced verification problem

Raw verification results

Verification report(s)

Figure 1: Formal verification workflow of PLCverif.

1. PLC program parsing. First, PLCverif parses the
PLC program (located in one or several files) to be
analysed. By choosing the entry point of the verifica-
tion, the analysis can be limited to a part of the program.
The parsed PLC program is automatically translated
into a mathematical, control flow-based representation,
producing so-called control flow automata (CFA). This
precise description will serve as the base for analysis.
Currently, the Siemens STL and SCL V5.3 input lan-
guages are supported1. PLCverif provides an editor as
shown in Figure 2.

Figure 2: STL code editor in PLCverif.

2. Requirement representation. The user should de-
scribe the precise requirement to be checked. This,
however, does not mean that the user needs to describe
the requirement using mathematical formulae. Cur-
rently, two requirement description methods are sup-
ported out of the box:

1 The novelties introduced in Siemens TIA Portal are not supported by
PLCverif yet.

• Assertion-based requirements: special comments
in the source code (e. g. //#ASSERT On <>
Off) can describe expressions (invariants) which
are expected to be always satisfied at a given lo-
cation of the program. The verification job will
then check if the violation of any of the selected
assertions is possible.

• Pattern-based requirements: the user chooses a
requirement pattern that is a precisely phrased
plain text sentence with some placeholders, e. g.
“If α is true at the end of a PLC cycle, β shall be
true at the end of the same cycle.”. The gaps in
the requirement pattern (α and β in the previous
example) should be filled with expressions over
the PLC variables. For each requirement pattern,
a defined temporal logic representation is defined
which will be used in the next steps.

• If needed, new types of requirement representa-
tions can be defined, adapted to the specific needs.

3. CFA reductions. The formal, precise CFA represen-
tation of the program, including also the requirement,
may need to be reduced in order to make the verifica-
tion feasible and efficient. These reductions will not
change the verification result for the given requirement;
however, they may remove parts of the program which
do not influence the result of the currently checked
requirement.

4. External model checking. The model checking itself
is performed by widely used model checker tools. In
this step, (i) the reduced CFA will be translated into the
input syntax of the chosen model checker tool, (ii) the
model checker tool is executed, and (iii) its output,
notably the counterexample if available, is parsed to
PLCverif’s internal representation.
Currently the following external model checkers are
supported: NuSMV [8], nuXmv [9], Theta [10] and
CBMC [11]. The different model checkers have differ-
ent strengths and weaknesses. In addition, not every
feature is supported by every model checker. For exam-
ple, Theta does not support bitwise operators. CBMC
often provides good performance, but it is a bounded
model checker and this may cause false negative results.
If needed, new model checkers can be integrated into
PLCverif easily.

5. Reporting. The last step of the formal verification
workflow is to produce verification reports. Some of
these reports are in human-readable form and target the
user of PLCverif. Other reports are machine-readable
and serve as descriptions for the execution environment
or as artefacts for later summary reports. Figure 3
shows an example HTML verification report.

The verification workflow is guided by a verification case,
which describes the code and the requirement to be analysed,

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOBPP01

MOBPP01
22

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution



Figure 3: Verification report.

the verification tools and reporters to be used. Additionally,
it permits the fine-tuning of every element in the verification
workflow. PLCverif provides a convenient graphical editor
for the user to describe the verification case, as shown in
Figure 4.

New Features with Respect to the Prototype Tool
At first glance, the feature set of PLCverif looks similar to

the feature set of the prototype tool, discussed in [4]. Hence,
we highlight the main novelties from the user point of view
below.

• Native support of STL code, together with an editor,
content assist, validation, etc.

• Support for assertions in the SCL and STL programs
and formal assertion violation checking.

• Integration of new model checkers (CBMC and Theta).
CBMC is a software model checker for C programs [12],
thus a C representation of the CFA is produced for ver-
ification purposes by PLCverif. Theta is a framework
for abstraction refinement-based model checking [13],
including several state-of-the-art algorithms.

• Full command line support. Every verification per-
formed via the graphical interface can also be done
through the command line interface. This permits
the automation of using PLCverif, for example the au-
tomatic re-execution upon every requirement change
or addition. This is an essential feature to integrate
PLCverif in a continuous integration practice.

• Extensibility. Most features of PLCverif can be ex-
tended or adapted using plug-ins, even by 3rd parties,
without any modification required in the platform itself.
This is discussed in detail in the next section.

Figure 4: Verification case editor.

PLCverif FOR DEVELOPERS

The majority of the re-engineering work done is only
visible for the developers. Here, developer does not only
mean the core platform developers, but also those who may
eventually extend and adapt PLCverif to their verification
needs.

It was known from the beginning of the project that it is
not possible to cover all the potential needs with PLCverif:
every potential PLC language, every requirement represen-
tation method, every external model checker tool, every
verification report format, etc. Therefore, PLCverif was
designed as a generic, open (PLC) code analysis platform.
This section overlooks the main features of this platform and
its extensibility.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOBPP01

Software Technology Evolution
MOBPP01

23

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



PLCverif Platform Features
At the highest level, PLCverif is a program analysis plat-

form that provides three main components:

• Metamodels and common data structures to describe
the programs under analysis and to provide a common
“language” between the different parts of the defined
workflows,

• An interface for a program analysis job, i. e. a workflow
that takes a formal representation of a PLC program
and produces some artefacts,

• A homogenized way to handle (read, load, save) the
settings of each part of the platform.

Metamodels PLCverif contains an expression meta-
model to describe logic, arithmetic and temporal logic (Com-
putation Tree Logic and Linear Temporal Logic) expressions.
These expressions can be used in requirements and in the
CFA representations of the PLC programs as well. An ex-
pression parser and an expression editor are both included
too to make it easier to handle the textual representation of
the expressions.

An automata-based representation of PLC programs is
defined by the platform too. Briefly, in an automaton, loca-
tions and transitions represent the behaviour of the program.
The transitions may have guard conditions and actions (typ-
ically variable assignments). In an automaton, at most one
of the locations is active. A transition, connecting a source
and a target location, may fire if its source location is active
and its guard condition is satisfied. After firing, its target
location will become active and the associated actions will
be executed. Several automata can be grouped together in a
network, and special call transitions allow their interactions.

Relying on the expression metamodel, two control flow
automata metamodels are defined. A control flow network
declaration (CFD) models the control flow automata at the
level of declarations. One advantage of the CFD is that it is
easy to generate a CFD for a PLC program, also it is easy
to handle by model checkers whose input language is close
to a general-purpose programming language. However, it
is difficult to do reductions on this representation and most
model checkers cannot handle the rich data structures and
the need for instantiation.

This is why a second, control flow network instance (CFI)
metamodel is included too. In a CFI, the automaton instances
do not need instantiation anymore, the rich data structures
are instantiated and flattened. This representation can be
more efficiently reduced and it is much closer to the syntax
of NuSMV and Theta for example. The instantiation of a
CFD (the conversion to a CFI) is performed by PLCverif.
In addition, a trace will be generated that establishes a link
between the components of the result CFI and the source
CFD.

Program analysis job The unit of work in PLCverif
is an execution of a job. A job is a defined set of steps

on a parsed PLC code that produces some artefacts (job
results). The principal job of PLCverif is the verification
job. It implements the workflow that was shown in Figure 1.

Settings loading and saving The settings, as defined in
PLCverif, are a generic way to represent various information
that is needed for the execution of a given job. They will
describe for example the selected job and selected verifica-
tion tool, the detailed settings of the verification tool, the
timeout to be used, etc. Essentially every information that
can influence the execution of a job is called a setting. The
settings are stored as hierarchical key-value pairs.

Some of the settings will be defined for each individual
execution (e. g. metadata of the current verification job,
requirement to be checked). The effective settings consist of
them merged with the default settings and the installation-
specific settings (e. g. location of the external verification
tools on a given machine). The effective settings can be
saved to make the job execution reproducible.

The settings can be defined textually (in a file or as com-
mand line arguments), or by using graphical editors (e. g. the
verification case editor shown in Figure 4 is such a graphical
interface).

Example. The verification case shown in Figure 4 corre-
sponds to the following settings.
-id = always-non-negative2
-description = "The return value of the absolute

value function is always non-negative, if
the input is not -32768."

-name = "Absolute value is always non-negative"
-sourcefiles.0 = abs.scl
-lf = step7
-lf.entry = FC_ABS
-job = verif
-job.backend = nusmv
-job.req = pattern
-job.req.pattern_id = pattern-implication
-job.req.pattern_params.1 = "FC_ABS.IN != -32768"
-job.req.pattern_params.2 = "FC_ABS.RET_VAL >= 0"

Note that the path to the NuSMV binary is not defined any-
where. This is taken from the installation specific settings,
but could be included above explicitly too, in the following
way:
-job.backend.binary_path = C:\NuSMV\nusmv.exe

As the verification cases (and other settings) are defined in
such simple format, they can be easily generated if needed.

Extensibility
As mentioned earlier, PLCverif is designed to be an open,

extensible PLC code analysis platform. The feature set can
be extended with plug-ins that essentially implement given
interfaces (more precisely, PLCverif plug-ins are Eclipse
extensions, implementing given extension points). There
are various extension points defined in PLCverif:

• The job extensions can describe and implement custom
PLC program analysis workflows. They can define their
own extension points too.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOBPP01

MOBPP01
24

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution



• The language frontend extensions are responsible for
parsing certain types of PLC programs and translating
them into corresponding control flow automata decla-
rations.

• The CFA reduction extensions implement various al-
gorithms to make the formal models of the PLC pro-
grams smaller and therefore to improve the verification
performance.

In addition, the verification job described before defines
several extension points too:

• The requirement representation extensions are re-
sponsible to represent the requirements described by
the user in a defined format into temporal logic repre-
sentation. These extensions can also modify the CFA
(e. g. by adding some monitors) in order to make the
requirement representable in temporal logic.

• The verification backend extensions solve the verifi-
cation problem (check a temporal logic requirement on
the reduced CFA model) and provide the result of the
verification. Typically, these plug-ins provide mapping
from one of the CFA formalisms to the input syntax of
the external model checker. Next, the model checker is
executed and its output, notably the verification result
and the counterexample if available, will be parsed.

• The verification reporter extensions represent a sub-
set of the verification result in a human-readable or
machine-readable format.

The extensions of the verification job may have graphi-
cal representations too, contributing to the verification case
editor with custom editor components.

Further Extensions
In addition to the built-in extensions, which are part of

the extension library, new extensions can be easily devel-
oped to adapt PLCverif to custom needs. For example, new
requirement representation plug-ins can be developed to
provide an interface for specific requirements. If needed
due to some particularities of programs under analysis, new
CFA reductions can be implemented. If the result is ex-
pected in a particular format, a new reporter plug-in can be
implemented.

For example, the two latest custom extensions built: an
implicit requirement representation plug-in that can be used
for checking whether division by zero may occur in the
program, and a verification reporter plug-in that can translate
the counterexample to the format expected by one of our
testing tools [14].

USE CASES
To demonstrate the usability of our tool, some of our

recent success stories are listed below. This section aims to
point to the reader to possible fields of application of the
tool with real industrial installations.

ITER
In [6], we have already reported about our work targeting

the verification of a PLC program that implements ITER’s
High Integrity Operator Commands (HIOC) protocol. Even
though the re-engineering of the PLCverif platform has
just started, we already benefited from the convenience of
the assertion-based requirement description and the perfor-
mance of CBMC. Although it is difficult to prove the correct-
ness of a cyclic program using CBMC due to its bounded-
ness, it was able to provide us interesting property violations
quickly. This method complemented well the pattern-based
requirement verification with NuSMV using our prototype
tool.

Interlocks for Magnet Test Benches
CERN develops, maintains and operates various supercon-

ducting magnet test benches. The safety interlocks of these
benches are typically implemented using fail-safe PLCs.
PLCverif was used in the development of at least 5 dif-
ferent PLC-based interlock systems. In the frame of the
collaboration with GSI Helmholtz Centre for Heavy Ion Re-
search, CERN built a test facility for the superconducting
magnets [15] to be used in the Super Fragmentation Separa-
tor (Super-FRS). As these magnet tests involve various risks
(e. g. high voltage, high current, cryogenic fluids), the PLC-
based interlock and personal protection system is critical.
We have used PLCverif to analyse the fail-safe PLC program
with respect to the semi-formal specification provided by
our internal client.

The fail-safe PLC program, written in Siemens LAD lan-
guage, is approximately 10,000 lines long when exported to
STL. It contains about 120 (digital and analogue) inputs and
80 outputs.

The specification has been formalised mainly as asser-
tions. In total, 163 assertions have been written or generated
from the specification. Some of the generated assertions are
very complex, up to 10,000 characters long. PLCverif was
able to check the assertions corresponding to the key safety
functions in less than 15 minutes. Verifying all formalised
assertions takes more time, approximately 4 hours. As for
different requirements different model checkers provided the
best performance, we used all three of NuSMV, CBMC and
Theta.

The formalisation of the requirements, the model check-
ing results and the code reviews conducted consequently
revealed important, interesting problems with varying sever-
ity. Attributed directly or indirectly to formal verification, 17
issues have been identified altogether. Some of these were
critical flaws in the implementation of the fail-safe logic.
The use of PLCverif helped to improve the quality of the
interlock logic and to increase the confidence of both the
client (domain experts) and the PLC program developer.

SPS Personnel Protection System
PLCverif is being applied to the Personnel Protection

System (PPS) of the Super Proton Synchrotron (SPS) ac-

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOBPP01

Software Technology Evolution
MOBPP01

25

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



celerator [16]. The associated control system has a highly
distributed architecture based on several Siemens S7-1500F
PLCs which implement about 30 different Safety Functions.
The PLC program has been designed with a configurable
approach where a generic software is instantiated for each
access zone. This generic safety program, written in LAD
programming language, is structured in different modules
corresponding to each of the specified Safety Instrumented
Functions (SIFs). As a consequence of the configurable
program design, the verification activities become very chal-
lenging as the PLC program contains many extra configu-
ration variables which increases exponentially the number
of combinations to explore. Initially, PLCverif has been
applied to verify the individual generic modules of these
PLC programs. The first verification campaign has shown
very promising results and some safety critical discrepancies
between the PLC program and the specification have been
found. Currently all except one module could be success-
fully verified by PLCverif. Further investigations are needed
to overcome the enormous state space of the created formal
model and to be able to verify all the SIFs.

OPEN SOURCE LICENSING
There is a wade spectrum of software licences ranging

from protective to public domain (e.g. GPL, MIT, BSD,
EPL). The main idea behind the PLCverif project was to
contribute improving the quality of the developed software
to control industrial installations for all interested people.
This naturally fits with an open and permissive license type.
We analysed different options and confronted them with our
needs which basically can be summarised as making a tool
usable for a large community while allowing third-party con-
tributors to include their latest research developments which
could help to increase the functionality and performance of
the tool.

The expressions of interest we have gathered during the
project showed three main types of potential contributors:

• Academia: interested in closing the gap between re-
search and practical applications of formal methods
who identified a tool where they could try their lat-
est research (e.g. reduction methods, model checkers,
symbolic execution)

• Industrial integrator: interested in providing error-
free industrial control systems to their clients

• Project responsible: interested in making a final and
sound validation of the software to be deployed for their
critical systems (e.g. safety instrumented systems)

In collaboration with the Knowledge Transfer (KT) group
at CERN, we decided to release the PLCverif tool under the
Eclipse Public License 2.0 (EPL [17]) which is similar to
the GNU General Public License (GPL [18]) but allows to
link the code under this licence to proprietary applications.
This allows both, the use and the extension of the tool, even
for commercial purposes. We believe that this choice will

foster the collaboration between the interested contributors
in all the three cases described previously.

The licence selection was finally narrowed to two possibil-
ities: EPL and Apache [19] as they are permissive licences.
This type of licence places few restrictions on users and
often only requires that the original creators are attributed
in any distribution or derivative of the software. Apache
seemed most popular but, on the other hand, most of the
PLCverif components are already under EPL license. Addi-
tionally the choice was appropriate taking into account that
licensing in EPL imposes the condition to disclose the mod-
ifications done to any EPL code and if a component under
EPL licence is distributed as part of a derivative in binary
form, the modified source must be available as well. This is
the main concept of copyleft licences and what guarantees
perpetual open source of the work.

CONCLUSION
Our work on improving the quality assurance and comple-

menting testing led to PLCverif, an automated formal verifi-
cation platform for PLC programs. Already in the prototype
phase, it had demonstrated its real-life usability in various
CERN projects. The described used cases reinforce this fact
and demonstrate its utility. The re-engineering work of the
last two years made it possible to make PLCverif a robust
and open platform for PLC program analysis. It provides
strong verification capabilities for Siemens PLC programs
out of the box, but it can also be extended by adding third-
party plug-ins to support new types of program analysis,
additional programming languages, more model checkers,
reductions and verification report formats.

PLCverif demonstrated the possibility of using formal ver-
ification for real-life projects. In addition, it is a successful
example of knowledge transfer at CERN, permitting to use
the results of our development outside of CERN as well. We
encourage the reader to download and try PLCverif from our
website, http://cern.ch/plcverif/ or the open source
repository.

ACKNOWLEDGEMENTS
We thank the CERN Knowledge Transfer Fund for pro-

viding the generous financial support that made this re-
engineering work possible and their precious help in finding
the best strategy to make this project open source. We also
thank the different collaborations and contacts along the
project, notably the EPFL (Switzerland) and the University
of Oviedo (Spain) during the initial phases of our research
and the BME (Hungary) during the re-engineering phase.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOBPP01

MOBPP01
26

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution



REFERENCES
[1] S. Biallas, J. Brauer, and S. Kowalewski, “Arcade.PLC: a

verification platform for programmable logic controllers”,
in Proc. 27th IEEE/ACM Int. Conf. on Automated Software
Engineering, 2012, pp. 338–341, doi:10.1145/2351676.
2351741

[2] A. Pakonen, T. Matasniemi, J. Lahtinen and T. Karhela, “A
toolset for model checking of PLC software”, in Proc. 2013
IEEE 18th Int. Conf. on Emerging Technologies & Factory
Automation, 2013, pp. 338–341, doi:10.1109/ETFA.2013.
6648065

[3] B. Fernández, D. Darvas, E. Blanco, J.C. Tournier, S. Bliudze,
J.O. Blech, and V.M. González, “Applying Model Checking
to Industrial-Sized PLC Programs”, IEEE Transactions on
Industrial Informatics, 2015, pp. 1400–1410, doi:10.1109/
TII.2015.2489184

[4] D. Darvas, E. Blanco Vinuela, and B. Fernández Adiego,
“PLCverif: A Tool to Verify PLC Programs Based on Model
Checking Techniques”, in Proc. 15th Int. Conf. on Accelera-
tor and Large Experimental Control Systems (ICALEPCS’15),
Melbourne, Australia, Oct. 2015, pp. 911–914. doi:10.
18429/JACoW-ICALEPCS2015-WEPGF092

[5] D. Darvas, M. István and E. Blanco, “Formal Verification
of Safety PLC Based Control Software”, Integrated Formal
Methods, ser. Lecture Notes in Computer Science, 2016, pp.
508–522, doi:10.1007/978-3-319-33693-0_32

[6] B. Fernandez Adiego et al., “Applying Model Checking
to Critical PLC Applications: An ITER Case Study”,
in Proc. 16th Int. Conf. on Accelerator and Large
Experimental Physics Control Systems (ICALEPCS’17),
Barcelona, Spain, Oct. 2017, pp. 1792–1796. doi:10.
18429/JACoW-ICALEPCS2017-THPHA161

[7] Six new projects will bridge gap between CERN and society,
CERN Bulletin, 2016, pp. 24–25.

[8] NuSMV: a new symbolic model checker, http://nusmv.
fbk.eu

[9] The nuXmv Model Checker, http://nuxmv.fbk.eu
[10] Theta repository, https://github.com/FTSRG/theta/
[11] CBMC, Bounded Model Checker, https://www.cprover.

org/cbmc/

[12] E. Clarke, D. Kroening, and F. Lerda, “A Tool for Check-
ing ANSI-C Programs”, Tools and Algorithms for the Con-
struction and Analysis of Systems, 2004, pp. 168–176, doi:
10.1007/978-3-540-24730-2_15

[13] T. Tóth, A. Hajdu, A. Vörös, Z. Micskei, and M. István,
“Theta: a Framework for Abstraction Refinement-Based
Model Checking”, in Proc. 17th Conf. on Formal Meth-
ods in Computer-Aided Design, 2017, pp. 176–179, doi:
10.23919/FMCAD.2017.8102257

[14] E. Blanco Vinuela, D. Darvas, and Gy. Sallai, “Testing Solu-
tion for Siemens PLCs Based on PLCSIM Advanced”, pre-
sented at the 17th Int. Conf. on Accelerator and Large Exper-
imental Control Systems (ICALEPCS’19), New York, NY,
USA, Oct. 2019, paper WEPHA018.

[15] E.S. Fischer et al., “Superconducting Magnets at FAIR”,
in Proc. 8th Int. Particle Accelerator Conf. (IPAC’17),
Copenhagen, Denmark, May 2017, pp. 2546–2549. doi:
10.18429/JACoW-IPAC2017-WEOCB2

[16] T. Ladzinski, F. Havart, and B. Fernandez Adiego, “Renova-
tion of the SPS Personnel Protection System: A Configurable
Approach”, presented at the 17th Int. Conf. on Accelerator
and Large Experimental Control Systems (ICALEPCS’19),
New York, NY, USA, Oct. 2019, paper MOPHA078.

[17] Eclipse, https://www.eclipse.org/legal/epl-2.0/
[18] GNU General Public License, https://www.gnu.org/

licenses/gpl-3.0.en.html

[19] Apache License, version 2.0, https://www.apache.org/
licenses/LICENSE-2.0

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOBPP01

Software Technology Evolution
MOBPP01

27

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.


