Author: Olszowska, N.
Paper Title Page
MOPHA072 Automation in NSRC SOLARIS With Python and Tango Controls 382
 
  • W.T. Kitka, M.K. Falowski, A.M. Marendziak, N. Olszowska, M. Zając
    NSRC SOLARIS, Kraków, Poland
 
  NSRC SOLARIS is a 1.5 GeV third generation light source constructed at Jagiellonian University in Kraków, Poland. The machine was commissioned in April 2016 and operates in decay mode. Two beamlines PEEM/XAS and UARPES were commissioned in 2018 and they have opened for conducting research in fall 2018. Two more beamlines (PHELIX and XMCD) are installed now and will be commissioned soon. Due to small size of the team and many concurrent tasks, automation is very important. Automating many tasks in a quick and effective way is possible thanks to the control system based on TANGO Controls and Python programming language. With facadevice library the necessary values can be easily calculated in real-time. Beam position correction with PID controller at PEEM/XAS and UARPES beamlines, alarm handling in SOLARIS Heating Unit Controller and real-time calculation of various vacuum parameters are shown as examples.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA072  
About • paper received ※ 30 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEDPR03 Synoptic GUIs in NSRC SOLARIS for Beamlines and Accelerators Visualization and Control 982
 
  • M.K. Falowski, T.R. Noga, N. Olszowska, M. Zając
    NSRC SOLARIS, Kraków, Poland
 
  High demand from scientists and operators to create new, clear and intuitive SCADA graphical interfaces for new beamlines and replace or supplement existing beamlines’ and accelerators’ graphical user interfaces is a challenging task. This is not only time consuming but very often requirements from users vary, change quickly and even sometimes they are mutually exclusive. To meet this challenge and provide clear, scalable and ergonomic graphical user interfaces, SOLARIS chose ’Taurus’ and ’svgsynoptic2’ to create synoptic applications which allow to visualize and control beamlines and accelerators with ease. In addition, it was decided to use identical scheme of visualization and control for synoptic applications on all beamlines, so scientists can get used to it, even if they carry out research on different beamlines. This paper presents the overall architecture and functionality of the applications.  
slides icon Slides WEDPR03 [22.442 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEDPR03  
About • paper received ※ 30 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)