Author: Nikiel, P.P.
Paper Title Page
MOPHA100 quasar : The Full-Stack Solution for Creation of OPC-UA Middleware 453
 
  • P.P. Nikiel, P. Moschovakos, S. Schlenker
    CERN, Geneva, Switzerland
 
  Quasar (Quick OPC-UA Server Generation Framework) enables efficient development of OPC-UA servers. The project evolved into a software ecosystem providing complete OPC-UA support for Detector Control Systems. OPC-UA servers can be modeled and generated and profit from tooling to aid development, deployment and maintenance. OPC-UA client libraries can be generated and published to users. Client-server chaining is supported. quasar was used to build OPC-UA servers for different computing platforms including server machines, credit-card computers as well as System-on-a-chip solutions. Quasar generated servers can be integrated as slave modules into other software projects written in higher-level programming languages (such as Python) to provide OPC-UA information exchange. quasar supports quick and efficient integration of OPC-UA servers into a control system based on the WinCC OA SCADA platform. The ecosystem can work with different OPC-UA stacks including 100% free and open-source ones. Thus it’s not restricted by licensing constraints. The contribution will present an overview and the evolution of the ecosystem along with example applications from ATLAS DCS and beyond.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA100  
About • paper received ※ 30 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA102 A Software Suite for the Radiation Tolerant Giga-bit Transceiver - Slow Control Adapter 1333
 
  • P. Moschovakos, P.P. Nikiel, S. Schlenker
    CERN, Geneva, Switzerland
  • H. Boterenbrood
    NIKHEF, Amsterdam, The Netherlands
  • A. Koulouris
    NTUA, Athens, Greece
 
  The future upgrades of the LHC (Large Hadron Collider) will increase its luminosity. To fulfill the needs of the detector electronic upgrades and in particular to cope with the extreme radiation environment, the GBT-SCA (Giga-Bit Transceiver - Slow Control Adapter) ASIC was developed for the control and monitoring of on-detector electronics. To benefit maximally from the ASIC, a flexible and hardware interface agnostic software suite was developed. A hardware abstraction layer - the SCA software package - exploits the abilities of the chip, maximizes its potential performance for back-end implementations, provides control over ASIC configuration, and enables concurrent operations wherever possible. An OPC UA server was developed on top of the SCA software library to integrate seamlessly with distributed control systems used for detector control and Trigger/DAQ (Data AcQuisition) configuration, both of which communicate with the GBT-SCA via network-attached optical link receivers based on FPGAs. This paper describes the architecture, design and implementation aspects of the SCA software suite components and their application in the ATLAS experiment.  
poster icon Poster WEPHA102 [3.008 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA102  
About • paper received ※ 30 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)