Paper | Title | Page |
---|---|---|
MOCPR05 | CI-CD Practices with the TANGO-controls Framework in the Context of the Square Kilometre Array (SKA) Telescope Project | 115 |
|
||
Funding: INAF Osservatorio Astronomico d’Abruzzo The Square Kilometre Array (SKA) project is an international effort to build two radio interferometers in South Africa and Australia to form one observatory monitored and controlled from the global headquarters (GHQ) in the United Kingdom. The project is very close to the end of its design phase and many decisions have already been made like the adoption of the Tango-controls framework. The time from the end of the design phases and the beginning of the construction has been called bridging with the goal of promoting CI-CD practices. CI-CD is an acronym for Continuous integration (CI) and continuous delivery and/or continuous deployment. CI is the practice of merging all developers’ local (working) copies into the mainline very often (at least daily). Continuous delivery is the approach of developing software in short cycle ensuring that it can be released anytime, and continuous deployment is the approach of delivering the software frequently and automatically. The present paper analyzes the decision taken by the system team (a specialized agile team for continuous practices in the Safe framework) for promoting those practices within the Tango-controls framework. |
||
![]() |
Slides MOCPR05 [1.878 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOCPR05 | |
About • | paper received ※ 20 September 2019 paper accepted ※ 10 October 2019 issue date ※ 30 August 2020 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPHA147 | Integrating the First SKA MPI Dish Into the MeerKAT Array | 575 |
|
||
Funding: National Research Foundation The 64-antenna MeerKAT interferometric radio telescope is a precursor to the SKA which will host hundreds of receptor dishes with a collecting area of 1 sq km. During the pre-construction phase of the SKA1 MID, the SKA DSH Consortium plans to build, integrate and qualify an SKA1 MID DSH Qualification Model (SDQM) against MeerKAT. Before the system level qualification testing can start on the SDQM, the qualified Dish sub-elements have to be integrated onto the SDQM and set to work. The SKA MPI DISH, a prototype SKA dish funded by the Max Planck Institute, will be used for early verification of the hardware and the control system. This prototype dish uses the TANGO framework for monitoring and control while MeerKAT uses the Karoo Array Telescope Control Protocol (KATCP). To aid the integration of the SKA MPI DSH, the MeerKAT Control and Monitoring (CAM) subsystem has been upgraded by incorporating a translation layer and a specialized SKA antenna proxy that will enable CAM to monitor and command the SKA dish as if it were a MeerKAT antenna. |
||
![]() |
Poster MOPHA147 [0.915 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA147 | |
About • | paper received ※ 30 September 2019 paper accepted ※ 10 October 2019 issue date ※ 30 August 2020 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |