Author: Lauer, K.R.
Paper Title Page
MOSH1002 adviewer: The EPICS Area Detector Configurator You Didn’t Know You Needed 645
MOPHA079   use link to see paper's listing under its alternate paper code  
 
  • K.R. Lauer
    SLAC, Menlo Park, California, USA
 
  Funding: This work was performed in support of the LCLS project at SLAC supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF00515.
EPICS Area Detector connects area detector cameras to plugin pipelines through the standard flat namespace that EPICS provides. Visualizing and re-configuring this port connectivity in AreaDetector can be confusing and - at times - painful. adviewer provides a Qt-based interactive graph visualization of all cameras and plugins, along with per-plugin configuration capabilities and integration with an image viewer. adviewer is built on Python, ophyd, typhon, qtpynodeeditor, and Qt (via qtpy).
 
poster icon Poster MOSH1002 [4.806 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOSH1002  
About • paper received ※ 25 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WECPL03 Implementation of the Motion Control System for LCLS-II Undulators 915
 
  • M.A. Montironi, C.J. Andrews, H. Bassan, K.R. Lauer, Yu.I. Levashov, H.-D. Nuhn, Z.R. Wolf
    SLAC, Menlo Park, California, USA
  • Ž. Oven
    Cosylab, Ljubljana, Slovenia
 
  As part of the LCLS upgrade called LCLS-II, two new undulator lines were introduced: a soft X-Ray line (SXR) and a hard H-Ray line (HXR). Serving distinct purposes, the two undulator lines employ different undulator designs. The SXR line is composed of 21 vertical gap, horizontally polarized undulators while the HXR line is composed of 32 undulator segments designed to operate on the horizontal axis and to produce a vertically polarized beam. The HXR undulators will replace the LCLS ones and thus the control system was designed with the main goal of maximizing the re-utilization of existing hardware and software. For this purpose, the motion control system based on RTEMS running on VME with Animatics SmartMotors was developed as an upgrade of the LCLS design and the cam-based undulator girder positioning system has been reused. The all new SXR undulators employ a new control system design based on Aerotech motion controllers and EPICS soft IOCs (input-output controllers). This paper describes how the most challenging motion control requirements were implemented focusing on motion synchronization, K-value to gap transformation, cams kinematics and calibration, and user interaction.  
slides icon Slides WECPL03 [0.625 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WECPL03  
About • paper received ※ 29 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA010 Control Systems Design for LCLS-II Fast Wire Scanners at SLAC National Accelerator Laboratory 1075
 
  • N. Balakrishnan, H. Bassan, J.D. Bong, M.L. Campell, P. Krejcik, K.R. Lauer, J.J. Olsen, L. Sapozhnikov
    SLAC, Menlo Park, California, USA
 
  One of the primary diagnostic tools for beam emittance measurement at the Linac Coherent Light Source II (LCLS-II), an upgrade of the SLAC National Accelerator Laboratory’s Linac Coherent Light Source (LCLS) facility, is the wire scanners. LCLS-II’s new Fast Wire Scanner (FWS) is based on a similar mechanical design of linear servo motor with position feedback from an incremental encoder as that for LCLS. With a high repetition rate of up to 1 MHz from the superconducting accelerator of LCLS-II, it is no longer sufficient to use point-to-point EPICS-controlled moves from wire to wire, as continued exposure will damage the wires. The system needs to perform on-the-fly scans, with a single position versus time profile calculated in advance and executed in a single coordinated motion by Aerotech Ensemble motion controller. The new fast wire scanner control system has several advantages over LCLS fast wire scanner controls with the capability to program safety features directly on the drive and integrate machine protection checks on an FPGA. This paper will focus on the software architecture and implementation for LCLS-II Fast Wire Scanners.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA010  
About • paper received ※ 30 September 2019       paper accepted ※ 11 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA083 ophyd Devices: Imposing Hierarchy on the Flat EPICS V3 Namespace 1284
 
  • K.R. Lauer
    SLAC, Menlo Park, California, USA
 
  Funding: This work was performed in support of the LCLS project at SLAC supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF00515.
EPICS V3 provides simple data types accessible over the network through Channel Access identified by a flat process variable (PV) name. This flexibility is often regarded as a strength of EPICS, as the user can easily pick and choose the information they require. However, such data is almost always inter-related in some manner, pushing the burden of reconstructing that relationship to the end-user/client. ophyd represents hardware in Python as hierarchical classes, grouping together related signals from the underlying control system. ophyd devices make imposing this hierarchy simple, readable, and descriptive. This structure allows ophyd to provide a consistent interface across a wide-range of devices, which can then be used by higher-level software for any number of tasks: from command-line inspection, to scanning/data collection (bluesky), or even automatic GUI generation (typhon, adviewer). ophyd contains a number of pre-built devices for common hardware (and IOCs) as well as the tools to build custom devices.
 
poster icon Poster WEPHA083 [2.385 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA083  
About • paper received ※ 30 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)