Author: Kaji, H.
Paper Title Page
MOAPP01 Control System of SuperKEKB 1
 
  • H. Kaji, A. Akiyama, T. Naito, T.T. Nakamura, J.-I. Odagiri, S. Sasaki, H. Sugimura
    KEK, Ibaraki, Japan
  • T. Aoyama, M. Fujita, Y. Kuroda, T. Nakamura, K. Yoshii
    Mitsubishi Electric System & Service Co., Ltd, Tsukuba, Japan
  • K. Asano, M. Hirose
    KIS, Ibaraki, Japan
  • Y. Iitsuka, N. Yoshifuji
    EJIT, Hitachi, Ibaraki, Japan
 
  We introduce the control system of the SuperKEKB collider which is based on EPICS. We standardize the CPU module so that we easily maintain our huge control system. Most Input/Output Controllers (IOCs) installed along the 3 km beamline at SuperKEKB are developed with only two kinds of CPU module. In addition to providing standard IOC for individual hardware, we develop some beam operation system which promotes the beam commissioning. The alarm monitoring system, abort trigger system, and Beam Gate system are developed by the control group. The sophisticated Beam Gate system for positron beam controls operation of both damping ring and main ring. It obviously promotes the beam commissioning at those rings. The other highlight is the precisely synchronized control system. It is necessary to realize the highly complicated control of beam injection process. We configure the dedicated network with the Event Timing System and the distributed shared memory. The distant hardware components are synchronously operated with this network. The beam commissioning of SuperKEKB has been started in 2016. The control system supports its fruitful beam operation without serious problem.  
slides icon Slides MOAPP01 [5.027 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOAPP01  
About • paper received ※ 03 October 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA067 New Injection Information Archiver for SuperKEKB 370
 
  • H. Kaji
    KEK, Ibaraki, Japan
 
  We upgraded the Injection Archiver System of the SuperKEKB collider. It records the information related with the beam injection. The system is configured on the EPICS network. The database server employs Archiver Appliance as the database management system. In addition, the distributed shared memory is installed on the database server. Its memory area is synchronized with other nodes such as bunch current monitor via the optical connection. Therefore the database server can collect the data like bunch current at the RF-bucket which the beam pulse is injected. By using this dedicated optical network, we succeed the high-speed and stable data acquisition. The injection data can be recorded, pulse-by-pulse, in 50 Hz without any packet loss.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA067  
About • paper received ※ 03 October 2019       paper accepted ※ 23 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUBPR04 The Fault Diagnosis of Event Timing System in SuperKEKB 741
 
  • D. Wang
    Sokendai, Ibaraki, Japan
  • K. Furukawa, H. Kaji, M. Satoh, H. Sugimura
    KEK, Ibaraki, Japan
  • Y. Iitsuka
    EJIT, Hitachi, Ibaraki, Japan
  • T. Kudou, S. Kusano
    Mitsubishi Electric System & Service Co., Ltd, Tsukuba, Japan
 
  Funding: Work supported China Scholarship Council
The new MRF event timing system is one of the most important components to maintain the reliable and stable operation of the SuperKEKB project. This system is utilized to distribute high precision level timing signals and accompanying control instructions to synchronize different subsystems and machines. Event generator (EVG) generates signals of different beam modes every 50 Hz pulse which contains several event codes while Event receivers (EVR) receives them and output signals to dedicated devices all over the installation. To certain these events are consistent during the distribution, an event fault diagnosis system is essentially needed. An EVR based event timing diagnostic system is thus developed by modifying the driver support module to provide a log system of persistent event data as well as comparing the received event codes with the beam injector pattern, detecting the event timing interval fault and notifying the results by email every day. Then, we are able to locate the fault, analyze the data, fix bugs or replace hardware and resume accelerator operation quickly.
 
slides icon Slides TUBPR04 [2.076 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-TUBPR04  
About • paper received ※ 30 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)