Author: Kadyrov, R.A.
Paper Title Page
MOPHA066 Electronics for LCLS-II Beam Containment System Shut-off 366
MOPHA065   use link to see paper's listing under its alternate paper code  
 
  • R.A. Kadyrov, D.G. Brown, E.P. Chin, C.I. Clarke, M. Petree, E. Rodriguez, F. Tao
    SLAC, Menlo Park, California, USA
 
  LCLS-II is a new FEL which is under construction at SLAC National Accelerator Laboratory. Its superconducting electron linac is able to produce up to 1.2 MW of beam power. Beam Containment System (BCS) is employed to limit the beam power and prevent excessive radiation in case of electron beam loss or FEL breach. Fast and slow shut-off paths are designed for devices with different response requirements. The system is required to shut-off the beam within 200 µs for some of the fast sensors. Fast path is based on custom electronic designs, and slow path leverages industrial safety-rated PLC hardware. The system spans for 4 km of LCLS-II and combines inputs from about 150 sensors of different complexity. Architecture is based on multiple levels starting with summing sensor inputs locally and to converting them into permits for the shut-off devices. Each level is implemented redundantly. Automated test and manual tests at all levels are implemented in the system. System architecture, electronics design and cable plant challenges are presented below.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA066  
About • paper received ※ 27 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THCPR07 Electronics for LCLS-II Beam Containment System Loss Monitors 1641
 
  • R.A. Kadyrov, C.I. Clarke, A.S. Fisher, M. Petree, C. Yee
    SLAC, Menlo Park, California, USA
 
  LCLS-II is a new FEL which is under construction at SLAC National Accelerator Laboratory. Its superconducting electron linac is able to produce up to 1.2 MW of beam power. In event of electron beam loss, radiation levels can exceed allowed levels outside thin shielding originally built for a lower energy LCLS linac. Beam Containment System (BCS) loss monitors are employed to detect the radiation and shut-off the beam within 200 µs, limit the radiation dose in occupied areas and minimize damage to the equipment. sCVD single-crystal diamond particle detectors are used as Point Beam Loss Monitors (PBLM) to detect losses locally. Fiber optics is selected as Long Beam Loss Monitor (LBLM). PMT at downstream end of the LBLM detects light produced by Cherenkov radiation. LBLM provides continuous coverage along electron beam path from the gun to the dump. Unified set of electronics is designed to integrate the charge from PMT or sCVD, compare the loss with predefined threshold and generate the fault if the limit is breached. Continuous self-checking is implemented for both types of sensors. Challenges in electronics design, cable selection and self-checking implementation are discussed.  
slides icon Slides THCPR07 [1.204 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-THCPR07  
About • paper received ※ 27 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)