Author: Fourtillan, P.
Paper Title Page
WEBPP03 The Laser Megajoule Facility: Front End’s Control System 891
 
  • J. Langot, C. Baret, P. Fourtillan, J.F. Gleyze, D. Hamon, D. Lebeaux, A. Perrin
    CEA, LE BARP cedex, France
 
  The Laser Megajoule (LMJ) is a 176-beam laser facility, located at the CEA CESTA Laboratory near Bordeaux (France). It is designed to deliver about 1.5 MJ of energy to targets, for high energy density physics experiments, including fusion experiments. Six 8-beams bundles are currently operational. The Front-End is the LMJ subsystem built to deliver the laser pulse which will be amplified into the bundles. It consists of 4 laser seeders, producing the laser pulses with the expected specificities and 88 Pre-Amplifier Modules (PAM). In this paper, we introduce the architecture of the Front-End’s control system which coordinate the operations of the laser seeders and the PAMs’s control systems. We will discuss the ability of the laser seeders and their control systems to inject the 88 PAMs almost independently. Then we will deal with the functions that enable the expected laser performances in terms of energy, spatial and temporal shapes. Finally, the technics used to validate and optimize the operation of the software involved in the Front-End’s equipment performance will be detailed.  
slides icon Slides WEBPP03 [58.495 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEBPP03  
About • paper received ※ 26 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THCPL04 SCIBORG: Analyzing and Monitoring LMJ Facility Health and Performance Indicators 1597
 
  • J-P. Airiau, V. Denis, P. Fourtillan, C. Lacombe, S. Vermersch
    CEA, LE BARP cedex, France
 
  The Laser MegaJoule (LMJ) is a 176-beam laser facility, located at the CEA CESTA laboratory near Bordeaux (France). It is designed to deliver about 1.4 MJ of energy to targets, for high energy density physics experiments, including fusion experiments. It operates, since June 2018, 5 of the 22 bundles expected in the final configuration. Monitoring system health and performance of such a facility is essential to maintain high operational availability. SCIBORG is the first step of a larger software that will collect in one tool all the facility parameters. Nowadays SCIBORG imports experiment setup and results, alignment and PAM* control command parameters. It is designed to perform data analysis (temporal/crossed) and implements monitoring features (dashboard). This paper gives a first user feedback and the milestones for the full spectrum system.
*PreAmplifier Module
 
slides icon Slides THCPL04 [4.882 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-THCPL04  
About • paper received ※ 01 October 2019       paper accepted ※ 08 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)