Paper |
Title |
Page |
WECPL02 |
Roadmap to 100 Hz DAQ at SwissFEL: Experiences and Lessons Learned |
909 |
|
- T. Celcer, A. Babic, S.G. Ebner, F. Märki, L. Sala
PSI, Villigen PSI, Switzerland
|
|
|
Providing reliable and performant Data Acquisition System (DAQ) at Free Electron Lasers (FELs) is a challenging and complex task due to the inherent characteristics of a pulsed machine and consequent need of beam synchronous shot-to-shot DAQ, which enables correlation of collected data associated with each FEL pulse. We will focus on experiences gathered during the process of moving towards 100 Hz operation at SwissFEL from the perspective of beam synchronous DAQ. Given the scarce resources and challenging deadlines, a lot of efforts went into managing conflicting stakeholder expectations and priorities and into allocation of time for operation support and maintenance tasks on one side and time for design and development tasks on the other side. The technical challenges we encountered have shown a great importance of having proper requirements in the early phase, a well thought system design concept, which considers all subsystems in the DAQ chain, and a well-defined test framework for validation of recorded beam synchronous data.
|
|
|
Slides WECPL02 [4.248 MB]
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WECPL02
|
|
About • |
paper received ※ 27 September 2019 paper accepted ※ 09 October 2019 issue date ※ 30 August 2020 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THCPL06 |
Introducing Big Data Analysis in a Proton Therapy Facility to Reduce Technical Downtime |
1608 |
|
- P. Fernandez Carmona, Z. Chowdhuri, S.G. Ebner, F. Gagnon-Moisan, M. Grossmann, J. Snuverink, D.C. Weber
PSI, Villigen PSI, Switzerland
|
|
|
At the center for Proton Therapy of the Paul Scherrer Institute about 450 cancer patients are treated yearly using accelerated protons in three treatment areas. The facility is active since 1984 and for each patient we keep detailed log files containing machine measurements during each fraction of the treatment, which we analyze daily to guarantee dose and position values within the prescribed tolerances. Furthermore, each control and safety system generates textual log files as well as periodic measurements such as pressure, temperature, beam intensity, magnetic fields or reaction time of components. This adds up currently to approximately 5 GB per day. Downtime of the facility is both inconvenient for patients and staff, as well as financially relevant. This article describes how we have extended our data analysis strategies using machine archived parameters and online measurements to understand interdependencies, to perform preventive maintenance of ageing components and to optimize processes. We have chosen Python to interface, structure and analyze the different data sources in an standardized manner. The online channels have been accessed via an EPICS archiver.
|
|
|
Slides THCPL06 [7.028 MB]
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-ICALEPCS2019-THCPL06
|
|
About • |
paper received ※ 30 September 2019 paper accepted ※ 09 October 2019 issue date ※ 30 August 2020 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|