10th ICALEPCS Int. Conf. on Accelerator & Large Expt. Physics Control Systems. Geneva, 10 - 14 Oct 2005, PO1.078-7 (2005)

BEYOND DEVICES:
AN IMPROVED RDB DATA-MODEL FOR
CONFIGURATION MANAGEMENT

T. Birke, B. Franksen, B. Kuner, R. Lange, P. Laux, R. Miiller, G. Pfeiffer, J. Rahn
BESSY, Berlin, Germany

ABSTRACT

At BESSY the initial approach of a device-oriented implementation of a RDB centred configuration
management system revealed serious shortcomings. The resulting tight coupling of configuration
parameters and corresponding application specifics requires changes in the data-model whenever new
applications or modifications of existing applications are needed. Sharing of data between
applications causes consistency problems and produces a high maintenance load.

A new data-model provides generic RDB-structures allowing to hold arbitrary configuration-
parameter sets. The application-specific demands are no longer reflected by the structure of the RDB
but the data stored in the generic RDB data-model. Main element is the possibility to store arbitrary
hierarchies of named nodes with attribute/value-pairs. This paper describes the implementation status
of the data-model and its API. An RDB-structure is given that allows representing acyclic directed
graphs of nodes that carry the specific information. Inheritance, overloading and references are as
well possible as arbitrary types of relations between nodes in this graph.

Since the novel RDB data-model by no means reflects the type of information stored, but provides
the infrastructure to store any type of data, it is capable of storing the whole range of configuration
parameters from hardware-access configuration to high-level-application meta-information.

INTRODUCTION, MOTIVATION

There are a couple of design factors, that make up the difference between a powerful control system
and a less successful approach — architecture, performance, consistency, flexibility, maintainability.
For complex systems, the management of configuration data was always a crucial task. The desire for
a robust, flexible and transparent central data repository has a long history and is growing — especially
with increasing availability of generic applications and the demand for flexible and frequently
modified installations.

Nevertheless a major evolutionary break-through is not yet visible: nagtaelng point (and still
frequently used approach) of storing configurations in named tables withigyfstem trees or even
hard-coded within different applications is easy to begin with and goodekirstands. By entering
the maintenance phase of a control system in production uniqueness and intershlps of the
various data blocks become important. These requirements are best captogea BEIB allowing to
store both data and their relations.

For most control systems the primary and quasi obvious model for configuration dataed dras
the device concept. Typical classification of devices is mostly expressesimilar naming-
conventions — at BESSY this convention is:

DEVICE := {member}[{index}] {family} [{counter}] [{subdomain}] {domain}{facility}

From the CDEV generalized data exchange model it is known, that the controimsyista
exchange API can be mapped to componentsdiéce, message andattribute. For the EPICS-based
control system at BESSY the corresponding communication entities, catbedgw variables (PVs),
are composed like:

DEVICE:signal :subsignal] [.FIELD]

At BESSY the relational database (RDB) as the primary data-source for control-system
configuration management has also been built around the device concept. Configuration data are
supplied by the RDB to the applications using instantiation of templates, retrieval scripts or direct
RDB access. Applications range from I/O set-up description to modelling programs (see [1]). The DB
part of the configuration management system consists of ~350 tables and ~200 views, split into sets of

10th ICALEPCS 2005; T.Birke,B.Franksen,B.Kuner,R.Lange,P.Laux,R.Miller,G.Pfeiffer,J.Rahn et al. : Beyo... 20f5

tables and views per application or device-class. In summary the RDB approach has proven to be very

reliable and generic. It is useful to have all configuration-parameters in a common, network-wide

available and platform/system-independent data-store. The existing configuration-management system

at BESSY is in operation since about 1996 and has proven to be an indispensable system.

Although the RDB data-model is very powerful and tailored to the needs of thespamnding

applications, the whole system revealed a number of shortcomings that becanasiimglyehard to

solve:

e Collision-free integration of new device-classes (consistent modificatadnexisting device-
classes, composite systems) is getting difficult

e Complexity of programs/scripts converting the database-contents into aonfajuration files is
growing

e For PV's information in the RDB data-model is not complete, only the device nan® @end
some relations to specific signals are stored, i.e. a complete lesindfol-system signals cannot be
produced by an RDB-query

e Applications that are not specific to any device-class (e.g. alarm-hardthiver...) can hardly be
configured using the existing RDB data-model

RELATED WORK

Within the EPICS-community there is development that started at APIS/faNprovide ade-
scriptive (“what-do-we-have”, re-active, as-is) system IRMIS[RMIS reads configuration-files for
various applications (usingrawlers) and feeds the configuration-data into its RDB data-model.
Having done that, IRMIS provides as-is snapshot of the actual productional control-system. The
IRMIS/APS RDB configuration analysis of currently active equipment controkrgred around a 3-
fold hierarchy:housed by, controlled by, powered by and easily browsable with a Java client.

Meanwhile several institutes joined the IRMIS-collaboration (APNSS SLAC/SPEAR,
DO/FERMI, TRIUMF, DESY, BESSY, Diamond, TINAF) helping to make IR3v# portable system
and trying to find a way to integrate existing site-specific RDB data-nsodsed to generate
configurations.

While IRMIS is a very useful toolkit to look at the installed and running control-system, the
problem of a generic model to create all configurations using the RDB as the primary data-source is
still unsolved ([3], [4] and [5]). Within the IRMIS-collaboration there's currently work in progress to
isolate a common RDB data-model (7dbCore) that is site-independent and provides portability of
IRMIS itself. 7dbCore can then as well be used as a base component for a prescriptive RDB data-
model used to create configuration files.

RDB RD

B
[-
k] L]

Scripts, Filters,
Frontends

Scripts, Filters,

I
I
APS RDB |
I
X
Frontends Config M

(e.g. Java, perl) Conﬁg (e.g. Java, perl)
EPICS-db /‘ EPICS-db /‘
AlarmHandler AlarmHandler

Archiver
Save/Restore

Archiver
Save/Restore

other sources DisplayManager i SETEES Display']'\‘/lanager
Figure 1: common installation using IRMIS Figure 2: integrated config. systemusing rdbCore
MIGRATION PATH

A decision has been made, to develop a second generation RDB data-model capablimgftise
shortcomings of the existing system, without losing the advantages. This RDBnddl-is planned
to be still apre-scriptive (“what-do-we-want-to-have”, pro-active, generating) systele ta create all
configuration files.

The new RDB data-model is designed to be appropriate to

e hold all parts of the PV-name.

e solve structural issues like device hierarchies, composition, inheritance

10th ICALEPCS 2005; T.Birke,B.Franksen,B.Kuner,R.Lange,P.Laux,R.Miller,G.Pfeiffer,J.Rahn et al. : Beyo... 30of5

e address polymorphism of data and their meaning:
e a PS may be replaced by another brand — same device, but differing 1/0-specs
e alarm-limits may depend on optics / machine operation status
e correction-patterns may depend on operation mode
e move hard-coded information from generating scripts into data segments obtiie R
e transfer all existing data from the old RDB, homogenize structures
The proposed new RDB structure will be adequate to stream-line our Configuring RDB Model
(Figure 1), adjust it to any future needs and accommodate any emerging rdbCore (Figure 2).

ATOMIC ENTITIES: GADGETS

The proposed RDB data-model was developed trying to catch the requirements of a controls-system
based on the toolkit of EPICS-base and the commonly used contributed generic applications:
1. Support of the disparate subsystems of an EPICS control system context
e EPICS .db, .template and .substitution files
e Alarm-handler configurations
e Archiver configurations
e Save/Restore configurations
2. Not device oriented — enable to store entities of information, that are not necessarily dependant on
a device
3. Represent hierarchies of arbitrary flavour

gadget gadget relation
PK gadget key - FK1 parent
hame -FK2 | child
FFK3 | type

gadget_attribute

-FK1 | gadget
-FK2 name
value

Figure 3: simplified ER-diagram of the atomic entites establishing the RDB data-model

The atomic elements of the resulting RDB data-model look very abstract and fairly simple, but
cover those requirements. They are capable of representing directed acyclic graphs with named nodes
and name/value-pairs attached to those nodes. The edges in these graphs are typed to distinguish
between them. The RDB data-model consist of just three tables:
® gadget — a gadget represents a node in a graph. It carries no further information but a name.
® oadget relation — a gadget-relation represents an edges in a graph. Identifying one gadget the

parent and another gadget the child of the relationship models the direction. The third gadget used

in a gadget-relation denotes the type of relation. Arbitrary types can be defined and used.
® oadget attribute — a gadget-attribute is a name/value-pair connected to a gadget. For now, the
value is a string that has no further restrictions. The name is again a gadget.

Restrictions

To unambiguously identify gadgets, there are some restrictions:

1. There can be at most one gadget relation with the same parent, child and type

2. There can be at most one gadget attribute with the same gadget and name

3. All root-gadgets (gadgets, that are not child in any relation) must have distinct names
where 1. and 2. are assured by unique-constraints in the RDB while 3. is checked by the API.

With these tables and following the restrictions it is possible to represent arbitrary directed graphs
with named nodes and edges.

10th ICALEPCS 2005; T.Birke,B.Franksen,B.Kuner,R.Lange,P.Laux,R.Miller,G.Pfeiffer,J.Rahn et al. : Beyo... 40f5

Advantages

e Relations enable construction of hierarchies

e Every gadget may be member of any number of hierarchies

e Hierarchies of gadgets with name/value-pairs connected to the gadgets open the possibility to
implement overloading

e Linking hierarchies using relations enable creating re-usable hierarchies and thus make inheritance
and prototyping possible

Additional Features

Every application, that wants to actually modify contents of the RDB is forced to provide an
application-name. Any entity (gadget, relation or attribute) created or modified by an application is
linked to that application-name. Only applications that provide the same application-name are
permitted to modify or delete those entities.

An application can also use an application-name as a filter and will only “see” entities, that belong
to this application in further queries.

COMPOSITION: [fscending,
THINK IN HIERARCHIES O aror oy e
The next organization level of the gadget child — parent
based RDB are hierarchies: o [:—:—;——h
e Hierarchies consist of gadgets with sets of | (Node 1 |
name/value-pairs (attributes) attached ! yremrl
e Separate groups of information are modelled : Atir3 stuy | lWﬂIlc
. . . 00 or
1.n ts}el:parate.hlerarc.:hles . . ‘ ke e - ‘
ese hierarchies get linked to combine | | Node 1
. . . | Attrl |abc |
information from different groups of ‘ 2 e | \ At oy |
information - == - — - \ Attr3 st
e Hierarchies allow to inherit and/or overload : . / :
default-values of attributes. Values of descending, ‘
attributes are inherited and can be overwritten all;ﬁ?ﬁ;ﬁiﬁ Odpi)awg:te | i‘"; zY; :
: : : : ttr &
while descending or ascending the hierarchy parent — child | e ‘

(see Figure 4). _ _ e
Attributes and values will propagate from Figure4: Overloading and Inheritance of Attributes
child — parent or from parent — child, depending on the way, the application retrieves the data

e Some hierarchies will serve as templates (re-usable class-definitions) for instantiation in other
hierarchies to inherit a sub-hierarchy (see Figure 5).

Device IMPLEMENTATION

Instantiation
The current implementation is done using Oracle 9i. The

simple RDB data-model is accessed using an API that is
currently implemented in PL/SQL and uses Oracle-specific
features (hierarchical queries using CONNECT BY and
START WITH, available in Oracle 9i and above). The API
Device-Class cOVers functions to

Definition e Initialize the package

o Add/modify/delete gadgets, relations and attributes

e Navigate through hierarchies (“find” certain gadgets)

o Identify a gadget using a path, i.e. specifying the relations
to parent and ancestors

Find root-gadgets with regard to a certain relation-type

e Finding children/parents with regard to a certain relation-

consists of

Figure 5: Template Instantiation type . .
e Collect attributes on a given path

10th ICALEPCS 2005; T.Birke,B.Franksen,B.Kuner,R.Lange,P.Laux,R.Miller,G.Pfeiffer,J.Rahn et al. : Beyo... 50f5

Examples

Given the hierarchy in Figure 6, A..H are gadgets representing nodes in
the hierarchy and T1 as well as T2 are gadgets representing types of
relations. Relations are represented by arrows and the direction is

parent—-child.

e get roots('T1') returns the gadget A because 4 has children with
relation-type 7', but no further parent with this relation-type
® get children('C', 'T1') returns the gadget D, because it is the only child

of C with relation-type 7'/

o get gadgets('/A/[T1]/%%/[T2]/%') returns the list {F, G, E}. The path
should be read from the end: find all gadgets having a parent with
relation 'T2', that again has any number of ancestors related with type

'T1', whose parent is the root-node 'A'.

In a path, % matches one gadget in the hierarchy while %% matches any

chain of gadgets in the hierarchy.

Figure 6: Sample Hierarchy

File Edit View
Login | Tree View | +/- Gadget | +/- Auribute | +/- Relation

Owners: |-any- ~| Rertypes: [-any- - Selected Gadget:
@ CadgetsTest Nome: igi
® EPICT Kt
o @ [EPICS] RelTypes R [ER5R
® [EPICS] Names Owner: Epics
% @ [EPICS]3.12.9
¢ @ [hasDbdFile] Standard. cibd Attributes:
¥ @ [EPICS] RecordTypes
o @ [EFICS] ai

> @ [EPICS] a0 fAME
5] bi

=i

& @ [EPICS] fanout ITSEL
> @ [EPICS] longin DTYF
o @ [EFICS] longout DisV
> @ [EPICS] mbbl DEA
& @ [EPICS] mbbiDiract 1505
+ @ [EPICS] mbho MLOK
o @ [EPICS] miboDirect

] permissi e

2
z
&
sEg e ER
=

DIsP 0
PROC o

STAT LDF

SEVR INVALID
NSTA NO_ALARM
NSEV. NO_ALARM
JACKS NO_ALARM
A I ES

o @ [EPICS] waveform B NO_ALARM
o @ [EPICS] hwLoweal LCNT]

o @ [EPICS] timesta mp PACT o

PUTF o

Figure 7: Java-based GadgetBrowser

SUMMARY AND CONCLUSION

Name Valie

While the DB-structure is simple by nature, the
API is the mandatory way to get data into the RDB.
The PL/SQL-based API has been finished and
bindings for Java, perl and Tcl have been written. A
simple browser has been written in Java (Figure 7).
This browser is also capable of modifying values of
attributes and will be extended to perform all basic
functions provided by the APL

Furthermore, the very first applications, that will
create EPICS-db files from the new RDB data-
model, are currently being developed. During this
process, the RDB data-model (including the
PL/SQL-API) as well as the applications are
improved and fine-tuned, based on the experiences
made and the evolving requirements. An example
use-case is shown in [6].

Powerful structural elements, navigation methods and modification tools have been developed
defining a second generation RDB-based configuration management environment. From the
microscopic view applicability, advantages and improvements of this approach are promising. Larger
scale properties will become visible as the process of data migration, extension and integration

proceeds.

REFERENCES

[1] T. Birke et al.: Relational Database for Controls Configuration Management

IADBG Workshop 2001, San Jose

[2] C. Saunders, D. A. Dohan: The IRMIS Object Model and Services API

ICALEPCS 2005, WE3A.1-60

[3] N. Amold: Relational Database Collaboration @ APS & SNS

EPICS-Meeting 2004, Tokai, Japan
[4] R. Chestnut: RDB Issues @ SLAC
EPICS-Meeting 2004, Tokai, Japan

[5] T. Birke: BESSY Configuration Management, Plans & Wishes
IRMIS Collaboration Meeting 2005, APS/ANL, Chicago
[6] T. Birke et al.: Use Case - Configuration Management with a generic RDB Data-Model

ICALEPCS 2005, PO1.079-7

