
THAP041 
hep-ph/0111257 

 

FIELDBUS DEVICE DRIVERS FOR ACCELERATOR CONTROL AT DESY 
 

H. G. Wu, DESY 
 

Abstract 
In order to interface the DESY fieldbus adapter, 

SEDAC (SErial Data Acquisition and Control system), 
a full duplex device driver was developed for the 
Windows NT, Linux, VxWorks, and Solaris operating 
systems. Detailed driver development issues as well as 
a common user interface will be presented, along with 
a comparison of the device drivers among the different 
operating systems. In particular, we shall present 
benchmark results concerning general performance as 
well as ease of development. 

1 INTRODUCTION 
The DESY in-house fieldbus adapter SEDAC has 

been used extensively at DESY since 1979 when it was 
designed. Thousands of hardware pieces, ranging from 
control magnets, BPMs to vacuum pumps are all 
connected with the SEDAC bus. SEDAC is a single 
master field bus. The SEDAC adapter (master) is via a 
50 ohm BNC cable, over several kilometers, 
connecting up to 32 SEDAC slave crates. The 
individual hardware modules are residing in the slave 
crate. Data are transferred as 16 bits telegrams with 4 
KHz rate, as read or write. There have been several 
generations of SEDAC adapters since then. In the past, 
during the upgrading of the machine control systems 
we have made several new SEDAC device drivers, 
which have a unified device access interface for using 
different versions of the adapters, and under various 
operating systems, such as Windows NT, Linux, 
VxWorks and Solaris. 

2 HARDWARE COMPONENTS 
One variant of the SEDAC adapters is a single slot 

ISA card with one SEDAC line. Another one is a 
SEDAC IP (Industry Park) card with two lines, 
occupying two IP slots. For accessing the IP card we 
use two kinds of IP carrier card from Greenspring, 
ATC40 ISA bus adapter and PCI-40A PCI bus adapter 
for PC. This allows access to 4 SEDAC lines through a 
single ISA or PCI slot of a PC. The VME162 CPU 
running VxWorks, with 4 on board IP slots, can also 
directly access 4 SEDAC lines. Both interrupt driven 
and polling mode of operation are possible. 

Like other field buses the register structure of the 
SEDAC adapter is rather simple, consisting of 

READ/WRITE data, Status/Error and 
Command/Configuration registers. One can load data 
into the register, then write to the command register to 
start transmission. To determine telegram transmission 
completion one can either poll the status register or 
wait on interrupt. 

3 DRIVER DEVELOPMENTS 

3.1 Comparison of different operating systems 

There are different approaches to implementing 
device drivers for various operating systems.  

3.1.1 Windows NT 

The kernel SEDAC device driver on Window NT is 
written with DDK (device driver kit) and SDK 
(software development kit). The development is rather 
easy because Window NT has a very powerful and rich 
I/O subsystem. Since the SEDAC adapter, and the IP to 
PCI or ISA adapters are rather old, requiring hardware 
jumpers, the SEDAC device driver under Windows NT 
is still a legacy driver, without a Plug and Play feature 
such as WDM (Windows Driver Model) for Window 
2000. 

There are several important features for the kernel 
SEDAC driver: 

• It is object based design, the kernel objects are 
extensively used, such as I/O Request Packets 
(IRPs), Driver Objects, Device Objects and 
Device Extension, Interrupts Objects, Device 
Queue Objects and Deferred Procedure Call 
(DPC) Objects. 

• There is one kernel device queue (FIFO) for 
each SEDAC IO device (line), the block of 
telegrams of all connected SEDAC lines can 
be parallel transmitted. 

• It handles multiple adapters simultaneously. 
• It provides synchronous and asynchronous 

calls.  
• A kernel timer keeps track of the passage of 

time during transmission for detecting 
timeout. 

• A cancel I/O routine is attached to each 
SEDAC IRP, the waiting telegrams submitted 
with asynchronous calls can be canceled by 
the user program. For an improperly 

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

557



 

 

terminated program it is critical to remove 
these telegrams. 

• An event logger is installed to log important 
events, such as device errors, into the System 
Event Log Buffer, for debugger purpose. 

• DPC is used for cleaning up packets, which 
makes the driver more responsive. 

• It can request and release hardware resources 
from/to the system via the registry to avoid 
conflicts with other drivers.  

 
Several utility calls are provided to give the status of 

the driver to applications. The driver can be called to 
find out how many programs have connected to the 
driver, how many telegrams are waiting in the queue, 
and a call to cancel its own submitted telegrams. 

We tested the kernel driver in polling mode, by 
adding either a kernel thread or a timer function. Since 
the minimum time interval in the NT kernel is 10 ms, 
which is much longer then SEDAC telegram interval 
~250us, the thread or timer based polling driver is not 
suitable.     

It is easy to port the driver to WINDOW 2000 
without many changes. 

3.1.2 Linux 

A similar kernel mode driver for Linux (kernel 2.0 
and 2.2) is written. Most of the coding was directly 
copied from the driver on Window NT. Although the 
environment of Window NT and Linux operating 
systems are very different, the handling of data transfer 
and control operations for the adapter are the same.  

Both blocking and non-blocking calls, as well as a 
select() mechanism are implemented. 

The asynchronous mode is not support directly by 
the driver. A separate user thread, with shared memory 
can be used as a middle layer for making asynchronous 
calls. 

The driver offers a direct bus IO memory map call, 
mmap(), to the application. For running full SEDAC 
bandwidth, the application can map the SEDAC 
register IO memory into user space, then use polling 
mode to transmit telegrams. 

The driver registration is done via command lines 
during driver loading, by specifying I/O address and 
interrupt numbers. 

3.1.3 VxWorks 

We use VxWorks OS with SEDAC for the HERA 
magnet system. The front-end machine is a SUN 
workstation running Solarias with 2 CPUs, the 
VxWorks memory, as a slave, can be seen from the 
SUN via the SBUS. In such a way, the SEDAC 
telegram queues (a circular buffer) are mapped both for 
VxWorks and Solaris. In order to have full bandwidth, 

we choose polling mode for SEDAC device access. 
The driver is operating in the user space, as a single 
task owned device driver. A simple data structure, 
submitted from front-end server (SUN), to the queue is 
specified, the VxWorks has a dedicated task, which is 
responding for polling the queue at 4 KHz rate. After it 
wakes up, it examines all the SEDAC lines and checks 
whether there are waiting telegrams queued by the 
SUN. If there are any, it loads the telegrams into the 
adapter, then waits for a response via semaphores. The 
interrupt service routine copies data and status, then 
releases the semaphore for further data transmission. 

3.2 Driver Interface 

The same user interfaces are used both for Windows 
NT and Linux. 

In the case of a driver running under Windows NT, 
we developed a DLL and an OCX (OLE Control 
eXtension) ActiveX control, for accessing the driver. 
One can use direct DLL calls to read or write blocks of 
telegrams synchronously. For asynchronous calls one 
can use sedac.ocx. When transmission completes, the 
SEDAC completion event will be fired. For Linux a 
similar interface routine was written. An application 
can open a SEDAC line, then use simple read or write 
calls to transmit telegrams. 

The interface routine, requested from an open line 
call from an application, will open the SEDAC 
character device file (/dev/sedacX). Then the 
application can fill in a data buffer, which contains the 
SEDAC line number, crate address and sub address, to 
read or write. In response to a read or write call, the 
interface routines DeviceIoCOntrol() or ioctl() are used 
to access the device driver. 

3.3 Benchmarks 

The overhead of the kernel driver depends heavily on 
the CPU clock rates and the number of connected 
SEDAC lines. For a 133 Mhz Pentinum PC running 
Window NT, the overhead is about 80us, while about 
25us for running Linux 2.2. This time is proportional to 
the number of SEDAC lines, which are simultaneously 
in operation. If one uses block telegrams, the transfer 
overhead is negligible, because the data transfers are all 
handled down at interrupt level without lots of context 
switches between application and kernel driver. The 
large difference of the driver overhead between running 
Window NT and Linux shows that the NT system is 
handling many more resources, particularly as it cannot 
be run in a console mode (i.e. no WINDOWS) as can 
Linux.  

The driver on VxWorks, as a single user mode 
driver, is operating at the full bandwidth of 4 KHz. 

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

558



 

 

CONCLUSION 
There are similarities for writing a kernel device 

driver for different operating systems. If one driver is 
written, the others can be quickly ported with minor 
changes.  

The single user device driver in user space is most 
efficient and fast, as in the case of SEDAC device 
driver for HERA magnet system running VxWorks.  

The SEDAC device driver has shown all the 
advantages of a kernel device driver. It has high 
performance when interrupt driven. It is easy to add 
new features and adding more devices. It is also 
capable of serving multitask operation, and handling 
synchronous requests from multithreads. 

REFERENCES 
[1] H. Frese and G. Hochweller, ’The Serial Data 

Acquisition System at Petra’, IEEE Nucl.  
Sci. 26(1979), pp 3384 

[2] Art Baker, ’The Windows NT Device Driver 
Book’, 1997 

[3] Alessandro Rubini, ’Linux Device Divers’, 1997 
[4] Wind River System Inc., ’Programmer’s Guide’, 

1997 
[5] Janet I. Egon and Thomas J. Teixeira, ’ Writing A 

Unix Device Driver’,1992 
 
 

 

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

559


