Non-invasive Longitudinal Profile Measurements of Electron Bunches Simultaneously to FEL Operation at MHz Rates

IBIC 2020 – 9th International Beam Instrumentation Conference

Nils Lockmann, Christopher Gerth, Bernhard Schmidt, Stephan Wesch Brazil, 14-18.9.2020

European XFEL

 $3^{\rm rd}$

 L_1

gun

harm.

Requirements on the longitudinal diagnostics

 L_2

 $700\,\mathrm{MeV}$

 BC_2

FEL facility for hard and soft x-rays ^[1]

 $130 \,\mathrm{MeV}$

 BC_1

- Requires kA peak currents ↔ few ten fs bunch lengths
- Current profile subject to highly nonlinear effects
 - CSR, space-charge
- Bunch trains with MHz repetition rates
- Different RF settings for SASE1/3 and SASE2

Diagnostics requirements

- Few femtosecond resolution
- Every bunch

SASE2

dump

SASE1

SASE2

SASE1

SASE3

 $17.5\,\mathrm{GeV}$

main

linac

RF

time

kickei

- Non-invasive
 - MHz readout rates

[1] Decking, W. et al., Nat. Photonics 14, 391–397 (2020)

 $2.4\,\mathrm{GeV}$ TDS

 BC_3

 L_3

Coherent Radiation Diagnostics

Longitudinal diagnostics based on spectral measurements

Coherent emission

Form factor F(f) is the Fourier transform of the current profile $\rho(t)$

$$F(f) = \int_{-\infty}^{\infty} \rho(t) \exp(-i 2 \pi f t) dt$$

Coherent Radiation Diagnostics

Form factor

[2] https://www.desy.de/xfel-beam/s2e/xfel.html

CRISP Spectrometer

Covering a wide frequency range

Coherent Radiation Intensity SPectrometer ^[3]

- 4 cascaded gratings
 - Each grating is a low-pass
- Two operation modes / grating sets
 - IR(6-60 THz) and THz (0.6-6 THz)

- Single-shot
- Pyroelectric detector arrays with 30 channels
- Total of 240 channels

[3] Wesch, S. et al., NIM A 665 40-47 (2011)

CRISP at European XFEL

Enabling MHz operation

Form factor and current profile

Retrieving the phase information

Measured form factors of single bunches

- Sufficient signal along wide frequency range
- Changes in bunch compression clearly detectable

Current profiles

- Intensively studied
- Gerchberg-Saxton algorithm starting from Kramers-Kronig phase \rightarrow Fast, well-defined solution

[4]

[4] Schmidt, B. et al., PRAB 23, 062801 (2020))

MHz operation

Pileup issue

Pileup properties

- Leads to signal after bunch train
- Ringing is phase stable, e.g. same for every bunch:
- Linear superposition \rightarrow inversion \rightarrow pileup removal

 $s_n^* = s_n + r_1 s_{n-1} + r_2 s_{n-2} + \dots + r_n s_0$

MHz operation

Current profile examples

Current profile measurements parallel to FEL operation

• Different compression settings for SASE1/3 and SASE2

SASE2 SASE1

SASE3

Selected bunch from each destination

time

RF

MHz operation

Continuous current profile monitoring

Every bunch along the train

- 2.2 MHz repetition rate
- Variations along flattops visible
- Transition regions
- ~ fs relative uncertainty

Conclusion

A potent diagnostic for hard x-ray FELs with MHz rep rates

Summary

- Few femtosecond resolution → broadband spectrometer, fast and robust phase retrieval
- Every bunch
 - Non-invasive \rightarrow diffraction radiation
 - MHz operation → pyroelectric detectors with fast pulse shaping and pileup correction

Outlook

- Online operator tool
 - Form factor and current profiles
- Slow and fast feedback:
 - Stabilize compression along bunch train
- Applicable for future CW XFELs

Thank you

... looking forward to IBIC20 and to answer your questions in the live session

nils.maris.lockmann@desy.de