

SOURCE SIZE AND EMITTANCE MEASUREMENTS FOR LOW-EMITTANCE LIGHT SOURCES

Xianbo Shi, Nazanin Samadi, Les Dallin, Dean Chapman

Advanced Photon Source

Paul Scherrer Institut University of Saskatchewan Canadian Light Source

Canadian Light Source

University of Saskatchewan Canadian Light Source

IBIC 2020, Sep. 2020

Motivation

- New generation light sources with low emittance
 - High degree of coherence: coherent diffraction imaging, ptychography, XPCS etc.
 - Small beam: nano-focusing
 - High flux density
- MBA Lattice

 $\varepsilon \propto \frac{E^2}{\left(N_s N_d\right)^3}$ $\varepsilon_y \propto \sigma_y \sigma_y'$

E: electron beam energy N_s : number of sectors in the ring N_d : number of dipoles per sector σ : electron source size

 σ' : electron source divergence

 Source size and beam stability measurements are challenging and important

Methods of measuring the source size

Imaging-based methods

- Pinhole imaging
- Coded aperture
- Compound refractive lenses
- Fresnel zone plates
- Kirkpatrick-Baez mirrors
- π polarization

Something different: ps-BPM system

- N. Samadi, "A real time phase space beam size and divergence monitor for synchrotron radiation" (PhD dissertation, University of Saskatchewan, 2019).
- N. Samadi, X. Shi, L. Dallin, and D. Chapman, Phys. Rev. Accel. Beams 23, 024801 (2020).
- N. Samadi, X. Shi, L. Dallin, and D. Chapman, Phys. Rev. Accel. Beams 22, 122802 (2019).
- N. Samadi, X. Shi, and D. Chapman, J. Synchrotron Radiat. 26, 1863 (2019).
- N. Samadi, X. Shi, L. Dallin, and D. Chapman, J. Synchrotron Radiat. 26, 1213 (2019).
- N. Samadi, X. Shi, L. Dallin, and D. Chapman, Proc. 10th Int. Part. Accel. Conf. FRXXRLS3, 4376 (2019).
- N. Samadi, L. Dallin, and D. Chapman, Proc. IBIC2018 186 (2018).
- N. Samadi, B. Bassey, M. Martinson, G. Belev, L. Dallin, M. De Jong, and D. Chapman, J. Synchrotron Radiat. 22, 946 (2015).

obstacle

- N. Samadi, X. Shi, L. Dallin, and D. Chapman, "Source size measurement options for lowemittance light sources" Phys. Rev. Accel. Beams 23, 024801 (2020).
- N. Samadi presentation at IPAC20

Experimental study

• X. Shi, N. Samadi, L. Dallin, L. Assoufid, and D. Chapman, "Experimental comparison and calibration of three methods to measure electron source properties for synchrotron radiation," (2020) to be submitted.

Interference-based methods

X-ray (multi/lens) interferometry

π polarization with diffraction

Double-slit interferometry

Grating interferometry

PAUL SCHERRER INSTITU

Pinhole Imaging

- $\Sigma^2 = (M\sigma_v)^2 + \sigma_{\text{pinhole}}^2 + \sigma_{\text{detector}}^2$
- Minimize $\frac{\sigma_{\text{pinhole}}}{M\sigma_{v}}$
- Method 1: Analytical
 - $\sigma_{\text{pinhole}}^2 = \sigma_{\text{geo}}^2 + \sigma_{\text{diff}}^2$ with $\sigma_{\text{geo}} = \frac{a}{2\sqrt{3}} \frac{(p+q)}{p}$, $\sigma_{\text{diff}} = \frac{0.886}{2.355} \frac{\lambda q}{q}$ • $\left(\frac{\sigma_{\text{pinhole}}}{M\sigma_y}\right)_{\text{min}} = \frac{1}{\sigma_y} \sqrt{0.217\lambda \left(p + \frac{p^2}{q}\right)}$
- Method 2: Near field (NF) propagation
 - $I_s(y) = \varepsilon(y) \cdot \varepsilon^*(y)$ • $\varepsilon(y) = \frac{1}{i\lambda a} \int_{-a/2}^{a/2} \varepsilon_0(y_0) \exp\left[\frac{i\pi}{\lambda a}(y-y_0)^2\right] dy_0$
 - $I_G = I_S(y) \bigotimes \left| \exp\left(-\frac{y^2 p^2}{2\sigma_{v}^2 q^2}\right) \right|$

N. Samadi, X. Shi, L. Dallin, and D. Chapman, Phys. Rev. Accel. Beams 23, 024801 (2020).

Pinhole Imaging: optimization @

•
$$\Sigma^2 = (M\sigma_y)^2 + \sigma_{\text{pinhole}}^2 + \sigma_{\text{detector}}^2$$

- Minimize $\frac{\sigma_{\text{pinhole}}}{M\sigma_y}$
- Method 1: Analytical

•
$$\sigma_{\text{pinhole}}^2 = \sigma_{\text{geo}}^2 + \sigma_{\text{diff}}^2$$

with $\sigma_{\text{geo}} = \frac{a}{2\sqrt{3}} \frac{(p+q)}{p}$, $\sigma_{\text{diff}} = \frac{0.886}{2.355} \frac{\lambda q}{a}$
• $\left(\frac{\sigma_{\text{pinhole}}}{M\sigma_y}\right)_{\text{min}} = \frac{1}{\sigma_y} \sqrt{0.217\lambda \left(p + \frac{p^2}{q}\right)}$

Method 2: Near field (NF) propagation

$$I_{s}(y) = \varepsilon(y) \cdot \varepsilon^{*}(y)$$

$$\varepsilon(y) = \frac{1}{i\lambda q} \int_{-a/2}^{a/2} \varepsilon_{0}(y_{0}) \exp\left[\frac{i\pi}{\lambda q}(y - y_{0})^{2}\right] dy_{0}$$

$$I_{G} = I_{s}(y) \otimes \left[\exp(-\frac{y^{2}p^{2}}{2\sigma_{y}^{2}q^{2}})\right]$$

N. Samadi, X. Shi, L. Dallin, and D. Chapman, Phys. Rev. Accel. Beams 23, 024801 (2020).

5

Pinhole Imaging: limitation

- Optimized aperture size for different source sizes
 - Limited resolution difficult to measure source sizes < 10 micron

Pinhole Imaging: summary

	Pinhole Imaging	
Optical setup	Simple, aberration free	
Measurement directions	All	
Fast measurement	Yes, white beam	
Resolution	Limited to >10 µm	
High-resolution detector	Yes	
Optics fabrication	Hard	
Information	Size and position	

Double-Slit Interferometry

•
$$I = 2I_0 \operatorname{sinc}^2 \left(\frac{\pi a}{\lambda q}y\right) \left[1 + V \cos\left(\frac{2\pi d}{\lambda q}y\right)\right]$$

Gaussian source

$$\sigma_y = \frac{\lambda p}{\pi d} \sqrt{\frac{1}{2} \ln \frac{1}{V}} \implies \frac{d\sigma_y}{\sigma_y} = \frac{|dV|}{2V \ln \frac{1}{V}}$$

 $d\sigma_y$ Minimize the source size sensitivity σ_{γ}

N. Samadi, X. Shi, L. Dallin, and D. Chapman, Phys. Rev. Accel. Beams 23, 024801 (2020).

Double-Slit Interferometry: optimization

- Slit separation d study
 - Optimized at size (V = 0.37) $\sigma_y = 0.225 \frac{\lambda p}{d}$
 - Detectable size range with at least 2% sensitivity (0.12<V<0.70): $0.13(\frac{\lambda p}{d}) < \sigma_y < 0.33(\frac{\lambda p}{d})$
- Slit size *a* study

- 100 80 (mm) 60 <u>ь</u> 40 20 0 30 40 10 20 *d* (µm)
- a needs to be small enough (<d/5) to ensure far-field approximation is valid
- Larger *a*, higher flux density

N. Samadi, X. Shi, L. Dallin, and D. Chapman, Phys. Rev. Accel. Beams 23, 024801 (2020).

Double-Slit Interferometry: summary

	Pinhole Imaging	Double Slit Interferometry
Optical setup	Simple, aberration free	Require monochromator
Measurement directions	All	1-D
Fast measurement	Yes, white beam	No
Resolution	Limited to >10 µm	Highest
High-resolution detector	Yes	Yes
Optics fabrication	Hard	Hard
Information	Size and position	Size only

PAUL SCHERRER INSTITUT

N. Samadi, X. Shi, L. Dallin, and D. Chapman, J. Synchrotron Radiat. 26, 1213 (2019).

11

ps-BPM: optimization

•
$$\sigma_{IRF} = D\sigma_{y'_{\text{total}}} = D\sqrt{\sigma_{y'_{\text{mono}}}^2 + \sigma_{y'_{K-edge}}^2}$$

- Small source-to-detector distance, D
- Effect dominated by the angular projected K-edge width

$$\sigma_{y'_{K-\text{edge}}} = \frac{\tan \theta_K}{E_K} \sigma_{E_{K-\text{edge}}}$$

• Small
$$\sigma_{E_{K-edge}}$$

- Large E_K
- Small θ_K (low reflection index)

Shadow simulation of ps-BPM for APS-U Source

- Si (111) single Bragg, Barium K-edge (37.441 keV)
- D = 10 m, detector resolution 10 μ m

N. Samadi, X. Shi, and D. Chapman, J. Synchrotron Radiat. 26, 1863 (2019).

ps-BPM: optimization

- Resolution of the ps-BPM relies on photon flux and noise level (SNR)
- SNR determined by
 - Dark noise of the detector
 - Fluorescence from the K-edge filter
 - Compton scattering from the monochromator crystals
 - Single Bragg (SNR = 6700) at 6.6 m, detector at 10 m.
- Improve SNR by
 - Summing up N_h pixels in the horizontal direction: N_h =1000
 - Averaging over N_i images: N_i=8
 - Improve SNR by $\sqrt{N_h N_i}$
 - Single Bragg: SNR = 6×10^5

N. Samadi, X. Shi, L. Dallin, and D. Chapman, Phys. Rev. Accel. Beams 23, 024801 (2020).

Ps-BPM: summary

	Pinhole Imaging	Double Slit Interferometry	ps-BPM
Optical setup	Simple, aberration free	Require monochromator	Require monochromator
Measurement directions	All	1-D	1-D in mono diffraction plane
Fast measurement	Yes, white beam	No	yes y, y', not small σ_y, σ'_y
Resolution	Limited to >10 µm	Highest	High, but needs calibration
High-resolution detector	Yes	Yes	No
Optics fabrication	Hard	Hard	Easy
Information	Size and position	Size only	y, y', σ_y , σ'_y simultaneously

Comparison of three methods (theory)

	Pinhole Imaging	Double Slit Interferometry	ps-BPM
Optical setup	Simple, aberration free	Require monochromator	Require monochromator
Measurement directions	All	1-D	1-D in mono diffraction plane
Fast measurement	Yes, white beam	No	yes y, y', not small σ_y, σ'_y
Resolution	Limited to >10 µm	Highest	High, but needs calibration
High-resolution detector	Yes	Yes	No
Optics fabrication	Hard	Hard	Easy
Information	Size and position	Size only	y, y', σ_y , σ'_y simultaneously

Experimental comparison of three methods

Electron source size measurement at the BMIT beamline at the Canadian Light Source

X. Shi, N. Samadi, L. Dallin, L. Assoufid, and D. Chapman, (2020) to be submitted.

Do not distribute

Experimental comparison of three methods

Pinhole imaging, 20 keV

17

X. Shi, N. Samadi, L. Dallin, L. Assoufid, and D. Chapman, (2020) to be submitted.

Do not distribute

S. Marathe, X. Shi, M. J. Wojcik, N.

Experimental comparison of three methods

Grating interferometry, 20 keV

X. Shi, N. Samadi, L. Dallin, L. Assoufid, and D. Chapman, (2020) to be submitted.

18

Experimental comparison of three methods

- ps-BPM calibration, Ba K-edge at 37.441 keV
 - σ_{IRF} is set to match $\Sigma_{\text{source},y} = 60$ from pinhole and grating measurements

X. Shi, N. Samadi, L. Dallin, L. Assoufid, and D. Chapman, (2020) to be submitted.

Conclusion

- Three radiation-based methods for source size measurement were reviewed.
- They can provide complementary information.
 - Pinhole imaging provides 2-D imaging of the source.
 - Double-slit or grating interferometry provide high-resolution for measuring small source sizes
 - ps-BPM after calibration can provide real-time information on source position, angle, size, and divergence simultaneously.
- New facilities should consider combining multi-methods at a dedicated diagnostic beamline (normally bending magnet).
- Challenges:
 - ps-BPM works better at high energies while the other two methods prefer lower energies
 - Application to undulators and FELs
 - Studies are being carried out to solve these challenges.

Acknowledgment

PSI Marco Stampanoni

University of Saskatchewan George Belev CLS Rob Lamb Mark Boland Ward Wurtz **Bud Fugal Denise Miller** Adam Webb Arash Panahifar

APS

Louis Emery Vadim Sajaev Nick Sereno Lahsen Assoufid Albert Macrander

Thank you!

