

Direct digitization and ADC parameter trade-off for bunch-by-bunch signal processing

> Irene Degl'Innocenti Università di Pisa, CERN

International Beam Instrumentation Conference September 2020

Outline

- Introduction
 - Direct digitization of bunch signals in beam instrumentation
 - ADC parameter trade-off

Outline

- Introduction
- Analysis of the error in the energy measurement of a direct digitally acquired pulse signal
 - The effect of a limited sampling rate
 - The effect of a limited sampling resolution
 - A combined SNR expression

Outline

- Introduction
- Analysis of the error in the energy measurement of a direct digitally acquired pulse
- Application example
 - A proposed architecture for the LHC BPM read-out electronics
 - Expected position resolution with commercial ADCs

- Introduction
- Analysis of the error in the energy measurement of a direct digitally acquired pulse
- Application example
- Summary

Direct digitization in Beam Instrumentation

Direct digitization in Beam Instrumentation

Direct digitization in Beam Instrumentation

- Less analogue components
 - Less parameter spread
 - Less parameter drifts effects
- Reprogrammable algorithms
- BUT demanding requirements in terms of resolution and sampling rate on the digitization stage

Analog to Digital Converter trade-off

Analysis of the error in the power measurement of a direct digitally acquired pulse signal

Problem Definition

Power measurement of a pulsed signal

Problem Definition

Power measurement of a pulsed signal

$$P_T = \frac{1}{T} \int_0^T |x(t)|^2 dt \qquad \qquad \overline{P_T} = \frac{1}{N} \sum_{n=0}^{N-1} (\hat{x}_{n,\tau} + \nu_n)^2$$

• Is $\overline{P_T}$ a good estimation of P_T ?

- What is the effect of a limited unsynchronised sampling rate?
- What is the effect of the finite resolution of the converter?

Energy and power in time and frequency domain

Energy and power in time and frequency domain

Energy and power in time and frequency domain

Energy and power in time and frequency domain

What happens when we sample the pulse

And the energy estimation?

And the energy estimation?

• If the Nyquist-Shannon criterion is met ($F_s > R_{Nyq}$)

$$\implies \widehat{P_T} = P_T = \frac{E}{T}$$

• BUT what if $F_s < R_{Nyq}$?

And the energy estimation?

And the energy estimation?

The estimation error

$$\epsilon(X_k, F_s, \tau) \triangleq \widehat{P_T} - P_T$$

 $\epsilon(X_k, F_s, \tau) = A_{X_k, N} \cdot 2\cos(2\pi F_s \tau) + B_{X_k, N} \cdot 2\sin(2\pi F_s \tau)$

$$A_{X_k,N} \triangleq \sum_{\substack{k=0\\N-1}}^{N-1} |X_k| |X_{k-N}| \cdot \cos(\varphi_k - \varphi_{k-N})$$
$$B_{X_k,N} \triangleq \sum_{k=0}^{N-1} |X_k| |X_{k-N}| \cdot \sin(\varphi_k - \varphi_{k-N})$$

The estimation error

$$\epsilon(X_k, F_s, \tau) \triangleq \widehat{P_T} - P_T$$

$$\epsilon(X_k, F_s, \tau) = A_{X_k, N} \cdot 2\cos(2\pi F_s \tau) + \frac{B_{X_k, N}}{2} \cdot 2\sin(2\pi F_s \tau)$$

Hyp:
$$\tau = U\left[0, \frac{1}{F_s}\right]$$

• $\mu_{\epsilon} = 0;$
• $\sigma_{\epsilon}^2 = 2\left(\left(A_{X_k,N}\right)^2 + \left(B_{X_k,N}\right)^2\right)$

The introduction of the converter noise $\boldsymbol{\nu}$

- We now take into account the limited resolution of the ADC
- How does it propagate in the estimator?

• Zero-mean Gaussian variable, with σ_v^2 variance

The introduction of the converter noise $\boldsymbol{\nu}$

- We now take into account the limited resolution of the ADC
- How does it propagate in the estimator?

• Zero-mean Gaussian variable, with σ_v^2 variance

The introduction of the converter noise $\boldsymbol{\nu}$

$$\eta \triangleq \overline{P_T} - \widehat{P_T}$$

$$\mu_{\eta} = \sigma_{\nu}^2 \qquad \qquad \sigma_{\eta}^2 = \frac{\sigma_{\nu}^4}{N} + 4P_T \frac{\sigma_{\nu}^2}{N}$$

Total error

$$\overline{P_T} = \frac{1}{N} \sum_{n=0}^{N-1} (\hat{x}_n + \nu_n)^2 = P_T$$

Total error

$$\overline{P_T} = \frac{1}{N} \sum_{n=0}^{N-1} (\hat{x}_n + \nu_n)^2 = P_T + \epsilon(X_k, F_s, \tau)$$

Total error

$$\overline{P_T} = \frac{1}{N} \sum_{n=0}^{N-1} (\hat{x}_n + \nu_n)^2 = P_T + \epsilon(X_k, F_s, \tau) + \eta(P_T, \sigma_v^2, F_s)$$

Total error

$$\overline{P_T} = \frac{1}{N} \sum_{n=0}^{N-1} (\hat{x}_n + \nu_n)^2 = P_T + \epsilon(X_k, F_s, \tau) + \eta(P_T, \sigma_v^2, F_s)$$

• Mean value:

$$SNR_{dB} = 10 \log_{10} \left(\frac{P_T^2}{2 \left(\left(A_{X_k, N} \right)^2 + \left(B_{X_k, N} \right)^2 \right) + \frac{\sigma_v^4}{N} + 4P_T \frac{\sigma_v^2}{N} \right)$$

Application example

A proposed new bunch-by-bunch read-out system for the LHC BPM

Before the ADC: electrodes combination

Before the ADC: electrodes combination

Before the ADC: electrodes combination

Before the ADC: signal "stretching" with LP filter

Single bunch pulse signal

- LP Filter
 - 200 MHz ۲
 - N=4 ۲
- Antialiasing
 - 600 MHz •
 - N=8 •

Single bunch pulse signal

- LP Filter
 - 200 MHz
 - N=4
- Antialiasing
 - 600 MHz
 - N=8

Power measurement SNR Analysis

$$SNR_{dB} = 10 \log_{10} \left(\frac{P_T^2}{2\left(\left(A_{X_k,N} \right)^2 + \left(B_{X_k,N} \right)^2 \right) + \frac{\sigma_v^4}{N} + 4P_T \frac{\sigma_v^2}{N} \right)} \right)$$

Power measurement SNR Analysis

$$SNR_{dB} = 10 \log_{10} \left(\frac{P_T^2}{2 \left((A_{X_k,N})^2 + (B_{X_k,N})^2 \right) + \frac{\sigma_V^4}{N} + 4P_T \frac{\sigma_V^2}{N} \right)} - \frac{\sigma_V^4}{N} + 4P_T \frac{\sigma_V^2}{N} + 4P_T \frac{\sigma_V^2}{N} - \frac{\sigma_V^4}{N} - \frac{\sigma_V^$$

Power measurement SNR Analysis

Position Resolution Analysis

With transmission bandwidth limit

Summary

Summary

- **Direct digitization** based systems are of growing interest for Beam Instrumentation applications.
- ADC state-of-the-art imposes a **trade-off** between sampling rate and resolution.
- It is possible to estimate the error introduced in the energy estimation of a digitized pulse as a function of the sampling rate and resolution.
- This analytic tool can facilitate the analysis of the performance of a system, but also assist in the design of a new system, especially in the selection of the ADC.